Skip to main content

Fluorescence Correlation Spectroscopy to Assess the Mobility of Nuclear Proteins

  • Protocol
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 464))

  • 2770 Accesses

Abstract

Recent developments in cell biology and microscopy techniques enable us to observe macromolecular assemblies in their natural setting: the living cell. These emerging technologies have revealed novel concepts in nuclear cell biology. In order to further elucidate the biochemistry of gene expression, replication, and genome maintenance, the major challenge is now to precisely determine the dynamics of nuclear proteins in the context of the structural organization of the nucleus. Fluorescence correlation spectroscopy (FCS) is an attractive alternative to photobleaching and photoactivation techniques for the analysis of protein dynamics at single-molecule resolution. Here we describe how FCS can be applied to retrieve biophysical parameters of nuclear proteins in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hemmerich, P. and Diekmann S. (eds.) (2005) Visions of the cell nucleus. American Scientific Publishers, CA, USA

    Google Scholar 

  2. Misteli, T. (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science. 291, 843-847

    Article  PubMed  CAS  Google Scholar 

  3. von Mikecz, A. and Hemmerich, P. (2005) Subnuclear pathology. In: Visions of the cell nucleus (Diekamnn, S. and Hemmerich, P. eds.), American Scientific Publishers, CA, USA, pp. 184-203

    Google Scholar 

  4. Magde, D. Elson, E. and Webb, W.W. (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705-708

    Article  CAS  Google Scholar 

  5. Widengren, J. and Mets, Ü. (2002) Conceptual basis of fluorescence correlation spectroscopy and related techniques as tools in bioscience. In: Single-molecule detection in solution—methods and applications (Zander, C., Enderlein, J., and Keller, R. A., eds.) Wiley-VCH, Berlin

    Google Scholar 

  6. Rigler, R. and Widengren, J. (1990) Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. Biosciences. 3, 180-183

    Google Scholar 

  7. Enderlein, J., Gregor, I., Patra, D., and Fitter, J. (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 2, 155-161

    Article  Google Scholar 

  8. Bacia, K. and Schwille, P. (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross correlation spectroscopy. Methods. 29, 74-85

    Article  PubMed  CAS  Google Scholar 

  9. Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G., and Hemmerich, P. (2004) High and low mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell. 15, 2819-2833

    Article  PubMed  CAS  Google Scholar 

  10. Schwille, P., Meyer-Almes, F.-R., and Rigler, R. (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional behaviour in solution. Biophys. J. 72, 1878-1886

    Article  PubMed  CAS  Google Scholar 

  11. Wachsmuth, M., Weidemann, T., Muller, G., Hoffmann-Rohrer, U.W., Knoch, T.A., Waldeck, W., and Langowski, J. (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys. J. 84, 3353-3363

    Article  PubMed  CAS  Google Scholar 

  12. Chen, Y., Müller, J.D., Ruan, Q., and Gratton, E. (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J. 82, 133-144

    Article  PubMed  CAS  Google Scholar 

  13. Jankowski, T. and Janka, R. (2001) in Fluorescence correlation spectroscopy: theory and applications (Rigler, R., and Elson, E. L., Eds.), Vol. 65, Springer, Berlin Heidelberg. pp. 331-345

    Chapter  Google Scholar 

  14. Weisshart, K., Jungel, V., and Briddon, S.J. (2004) The LSM 510 META - ConfoCor 2 system: an integrated imaging and spectroscopic platform for single-molecule detection. Curr. Pharm. Biotechnol. 2, 135-154

    Article  Google Scholar 

  15. Magde, D., Elson, E.L., and Webb, W.W. (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1, 29-61

    Article  Google Scholar 

  16. Meseth, U., Wohland, T., Rigler, R., and Vogel, H. (1999) Resolution of fluorescence correlation measurements. Biophys. J. 3, 1619-1631

    Article  Google Scholar 

  17. Haustein, E. and Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods. 2, 153-156

    Article  Google Scholar 

  18. Muller, J.D., Chen, Y., and Gratton, E. (2003) Fluorescence correlation spectroscopy. Methods Enzymol. 361, 69-92

    Article  PubMed  CAS  Google Scholar 

  19. Hink, M.A., Borst, J.W., and Visser, A.J. (2003) Fluorescence correlation spectroscopy of GFP fusion proteins in living plant cells. Methods Enzymol. 361, 93-112

    Article  PubMed  CAS  Google Scholar 

  20. Skakun, V.V., Hink, M.A., Digris, A.V., Engel, R., Novikov, E.G., Apanasovich, V.V., and Visser, A. J. (2005) Global analysis of fluorescence fluctuation data. Eur. Biophys J. 4, 323334. (Erratum in Eur. Biophys. J. (2005) 7, 972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Weidtkamp-Peters, S., Weisshart, K., Schmiedeberg, L., Hemmerich, P. (2008). Fluorescence Correlation Spectroscopy to Assess the Mobility of Nuclear Proteins. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 464. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-461-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-461-6_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-460-9

  • Online ISBN: 978-1-60327-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics