Skip to main content

Parallelized Antibody Selection in Microtiter Plates

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

  • 5358 Accesses

Abstract

The most common in vitro technology to generate human antibodies is phage display. This technology is a key technology to select recombinant antibodies for the use as research tools, in diagnostic tests, and for the development of therapeutics.

In this review, the high-throughput compatible selection of antibodies (scFv) in microtiter plates is described. The given detailed protocols allow the antibody selection (“panning”), screening and identification of monoclonal antibodies in less than 1 week.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318

    Article  CAS  PubMed  Google Scholar 

  2. Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153

    Article  CAS  PubMed  Google Scholar 

  3. Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145

    Article  CAS  PubMed  Google Scholar 

  4. Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155

    Article  CAS  PubMed  Google Scholar 

  5. Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233

    Article  CAS  PubMed  Google Scholar 

  6. Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, Gunzer M, Hust M, Dübel S (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625. https://doi.org/10.1371/journal.pone.0006625

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B (2015) Selection of scFv antibody fragments binding to human blood versus lymphatic endothelial surface antigens by direct cell phage display. PLoS One 10:e0127169. https://doi.org/10.1371/journal.pone.0127169

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rezaei J, RajabiBazl M, Ebrahimizadeh W, Dehbidi GR, Hosseini H (2016) Selection of single chain antibody fragments for targeting prostate specific membrane antigen: a comparison between cell-based and antigen-based approach. Protein Pept Lett 23:336–342

    Article  CAS  PubMed  Google Scholar 

  9. Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 1060:215–243. https://doi.org/10.1007/978-1-62703-586-6_12

    Article  PubMed  Google Scholar 

  10. Ayriss J, Woods T, Bradbury A, Pavlik P (2007) High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J Proteome Res 6:1072–1082. https://doi.org/10.1021/pr0604108

    Article  CAS  PubMed  Google Scholar 

  11. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348

    Article  CAS  PubMed  Google Scholar 

  12. Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170. https://doi.org/10.1016/j.jbiotec.2010.09.945

    Article  CAS  PubMed  Google Scholar 

  13. Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52. https://doi.org/10.1186/1472-6750-13-52

    Article  PubMed  PubMed Central  Google Scholar 

  14. Trott M, Weiβ S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 9:e97478. https://doi.org/10.1371/journal.pone.0097478

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chan SW, Bye JM, Jackson P, Allain JP (1996) Human recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library. J Gen Virol 77(Pt 10):2531–2539

    Article  CAS  PubMed  Google Scholar 

  16. Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SRE, Dyson MR, Flack G, Griffin GJ, Hooks Y, Howat WJ, Kolb-Kokocinski A, Kunze S, Martin CD, Maslen GL, Mitchell JN, O’Sullivan M, Perera RL, Roake W, Shadbolt SP, Vincent KJ, Warford A, Wilson WE, Xie J, Young JL, McCafferty J (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8:R254. https://doi.org/10.1186/gb-2007-8-11-r254

    Article  PubMed  PubMed Central  Google Scholar 

  17. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GMR, Cox D, Rajpal A, Pons J (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221. https://doi.org/10.1073/pnas.0909775106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989–994. https://doi.org/10.1038/79494

    Article  PubMed  Google Scholar 

  19. Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L, Schütte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. https://doi.org/10.1186/s12896-015-0125-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194. https://doi.org/10.1080/19420862.2016.1212149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schirrmann T, Hust M (2010) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651:177–209. https://doi.org/10.1007/978-1-60761-786-0_11

    Article  CAS  PubMed  Google Scholar 

  22. Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097

    Article  CAS  PubMed  Google Scholar 

  24. Finnern R, Pedrollo E, Fisch I, Wieslander J, Marks JD, Lockwood CM, Ouwehand WH (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dübel S (2009) Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol 25:424–428. https://doi.org/10.1016/j.nbt.2009.03.004

    Article  CAS  Google Scholar 

  26. Goffinet M, Chinestra P, Lajoie-Mazenc I, Medale-Giamarchi C, Favre G, Faye J-C (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One 6:e27756. https://doi.org/10.1371/journal.pone.0027756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 10:922–948. https://doi.org/10.1002/prca.201600002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review is an updated and revised version of [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Russo, G. et al. (2018). Parallelized Antibody Selection in Microtiter Plates. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics