Abstract
Since 1955, the US National Cancer Institute (NCI) has provided screening support to cancer researchers worldwide. Until 1985, the NCI screening program and the selection of compounds for further preclinical and clinical development under NCI auspices had relied predominantly on the in vivo L1210 and P388 murine leukemias and certain other transplantable tumor models (1). From 1975–1985, the in vivo P388 mouse leukemia model was used almost exclusively as the initial or primary screen. With few exceptions, agents that showed minimal or no activity in the P388 system were not selected by the NCI for further evaluation in other tumor models or alternative screens. Most of the available clinical anticancer agents are active in the P388 system; however, most were discovered prior to 1975 or by observations initially in test systems other than the NCI-operated P388 primary screen.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Driscoll JS. The preclinical new drug research program of the National Cancer Institute. Cancer Treatment Rep 1984; 68: 63–76.
Boyd JD, ed. National Cancer Institute planning to switch drug development emphasis from compound to human cancer-oriented strategy. Cancer Lett 1984; 10:1,2.
Boyd MR. National Cancer Institute drug discovery and development. In: Frei EII, Freireich E, eds. Accomplishments in Oncology. Philadelphia: Lippincott, 1986: 6876.
Boyd JD, ed. Division of Cancer Treatment Board approves new screening program, natural products concepts. Cancer Lett 1985; 11:4,5.
Boyd JD, ed. Reviewers report progress in new drug prescreen system development. Cancer Lett 1989; 15: 1–5.
Boyd MR. Status of the NCI preclinical antitumor drug discovery screen. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology Updates, vol. 3, no. 10. Philadelphia: Lippincott. 1989: 1–12.
Friend T. Plants, sea could yield new drugs. USA Today 1989; September 5:D1.
Kolberg RJ. Casting a wider net to catch cancer cures. J NIH Res 1990; 2: 82–84.
Ansley D. Cancer Institute turns to cell line screening. The Scientist 1990; 4: 3–9.
Stehlin D. Harvesting drugs from plants. FDA Consumer 1990; October:20–24.
Thompson D. Giving up on the mice. Time 1990; September 17:79.
Boyd MR. The future of new drug development. In: Niederhuber JE, ed. Current Therapy in Oncology. Philadelphia: BC Decker. 1993: 11–22.
Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 1995; 34: 91–109.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings, Workshop on “Disease-Oriented Antitumor Drug Discovery and Development”,Bethesda, MD, January 9–10, 1985: 1–273.
Shoemaker RH, Wolpert-DeFilippes M, Kern D, Lieber M, Makuch R, Miller W, Salmon S, Venditti J, Von Hoff D. Application of a human tumor colony forming assay to new drug screening. Cancer Res 1985; 45: 2145–2153.
Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 589–601.
Paull KD, Shoemaker RH, Boyd MR, Parsons JL, Risbood PA, Barbera WA, Sharma MN, Baker DC, Hand E, Scudiero DA, Monks A, Alley MC, Grote M. The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water-soluble formazan. J Heterocyclic Chem 1988; 25: 911–914.
Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Evaluation of a soluble tetrazoHum/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48: 4827–4833.
Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51: 2515–2520.
Vistica DT, Scudiero D, Skehan P, Monks A, Boyd MR. New carbon dioxide-independent basal growth medium for culture of diverse tumor and nontumor cells of human and nonhuman origin. J Natl Cancer Inst 1990; 82: 1055–1061.
Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren J, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82: 1107–1112.
Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero D, Monks A, Boyd MR. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 1990; 82: 1113–1118.
Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Boyd M. Feasibility of a high-flux anticancer drug screen utilizing a diverse panel of human tumor cell lines in culture. J Natl Cancer Inst 1991; 83: 757–766.
Shoemaker RH, Monks A, Alley MC, Scudiero DA, Fine DL, McLemore TL, Abbott BJ, Paull KD, Mayo JG, Boyd MR. Development of human tumor cell line panels for use in disease- oriented drug screening. In: Hall T, ed. Prediction of Response to Cancer Chemotherapy. New York: Alan Liss. 1988: 265–286.
Stinson SF, Alley MC, Fiebig H, Mullendore LM, Kenney S, Keller J, Boyd MR. Morphologic and immunocytochemical characteristics of human tumor cell lines for use in an anticancer drug screen. Anticancer Res 1992; 12: 1035–1054.
Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of the mean graph and COMPARE algorithm. J Natl Cancer Inst 1989; 81: 1088–1092.
Boyd MR, Paull KD, Rubinstein LR. Data display and analysis strategies for the NCI disease- oriented in vitro antitumor drug screen. In: Valeriote FA, Corbett T, Baker L, eds. Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development. Amsterdam: Kluwer Academic Publishers. 1992: 11–34.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Insti¬tute: Proceedings of the Ad Hoc Review Committee for the NCI In Vitro/In Vivo Disease- Oriented Screening Project. Bethesda, MD, September 23–24, 1985, Bethesda, MD: NIH. 1985: 1–243.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of the Ad Hoc Review Committee for the NCI In Vitro/In Vivo Disease- Oriented Screening Project. Bethesda, MD, December 8–9, 1986, Bethesda, MD: NIH, 1986: 1–173.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Insti¬tute: Proceedings of Workshop on “Selection, Characterization and Quality Control of Human Tumor Cell Lines for the NCI’s New Drug Screening Program,” Bethesda, MD, May 27–28, 1987. Bethesda, MD: NIH. 1987: 1–160.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of the Ad Hoc Review Committee for the NCI In Vitro/In Vivo Disease- Oriented Screening Project. Bethesda, MD, May 19–20,1988, Bethesda, MD: NIH. 1988: 1–218.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of the Ad Hoc Review Committee for the NCI In Vitro/In Vivo Disease- Oriented Screening Project. Bethesda, MD, November 13–15, 1989, Bethesda, MD: NIH, 1989: 1–245.
Boyd MR. Strategies for the identification of new agents for the treatment of AIDS: A national program to facilitate the discovery and preclinical development of new drug candidates for clinical evaluation. In: De Vita VT, Hellman S, Rosenberg SA, eds. AIDS, Etiology, Diagnosis, Treatment and Prevention. Philadelphia: Lippincott. 1988: 305–319.
Weislow OS, Kiser R, Fine DL, Bader J, Shoemaker RH, Boyd MR. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J Natl Cancer Inst 1989; 81: 577–586.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of Workshop on “Issues for Implementation of a National Anti-HIV Preclinical Drug Evaluation Program; Critical Parameters for an In Vitro, Human Host-Cell Based, Primary Screen.” Bethesda, MD, April 8–9, 1987, Bethesda, MD: NIH. 1987: 1–136.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of the Ad Hoc Advisory Committee for the Anti-HIV Drug Screening Program. Bethesda, MD, April 7–8, 1988, Bethesda, MD: NIH, 1988: 1–113.
Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute: Proceedings of the Ad Hoc Expert Advisory Committee for the Anti-HIV Drug Screening Program. Bethesda, MD, November 13–15, 1989, Bethesda, MD: NIH. 1989: 1–226.
Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ. The isolation and structure of a remarkable marine animal constituent: Dolastatin 10. J Am Chem Soc 1987; 109: 6883–6885.
Bai R, Pettit, GR, Hamel E. Dolastatin 10, a powerful cytotoxic peptide derived from a marine animal; inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990; 39: 1941–1949.
Hodes L, Pauli K, Koutsoukos A, Rubinstein L. Exploratory data analytic techniques to evaluate anticancer agents screened in a cell culture panel. J Biopharm Stat 1992; 2: 31–48.
Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinstein LV, Monks AP, Scudiero DA, Welch L, Koutsoukos AD, Chiusa AJ, Pauli KD. Neural computing in cancer drug development: Predicting mechanism of action. Science 1992; 258: 447–451.
van Osdol WW, Myers TG, Pauli KD, Kohn KW, Weinstein JN. Use of the Kohonen self- organizing map to study the mechanisms of action of chemotherapeutic agents. J Natl Cancer Inst 1994; 86: 1853–1859.
Weinstein JN, Myers T, Buolamwini J, Raghavan K, van Osdol W, Licht J, Viswanadham VN, Kohn KW, Rubinstein LV, Koutsoukos AD, Monks A, Scudiero DA, Anderson NL, Zaharevitz D, Chabner BA, Grever MR, Pauli KD. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute’s drug discovery program for cancer and AIDS. Stem Cells 1994; 12: 13–22.
Pauli KP, Hamel E, Malspeis L. Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. In: Foye O, ed. Cancer Chemotherapeutic Agents. Washington DC: American Chemical Society Books. 1995: 9–45.
Hirata Y, Uemura D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986; 58: 701–710.
Pettit GR, Herald CL, Boyd MR, Leet JE, Dufresne C, Doubek DL, Schmidt JM, Cerny RL, Hooper JN, Rutzier KC. Isolation and structure of the cell growth inhibitory constituents from the pacific marine sponge Axinella sp. J Med Chem 1991; 34: 3339, 3340.
Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA. Isolation and structure of spongistatin 1. J Org Chem 1993; 58: 1302–1304.
Pauli KD, Lin CM, Malspeis L, Hamel E. Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res 1992; 52: 3892–3900.
Bai R, Pauli KD, Herald CL, Malspeis L, Pettit GR, Hamel E. Halichondrin B and homohali- chondrin B, marine natural products binding in the vinca domain of tubulin; discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 1991; 24:15, 882–15, 889.
Bai R, Chiacz ZA, Herald CL, Pettit GR, Hamel E. Spongistatin 1, a highly cytotoxic, sponge- derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol Pharmacol 1993; 44: 757–766.
Acton EM, Narayanan VL, Risbood P, Shoemaker RH, Vistica DT, Boyd MR. Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. J Med Chem 1994; 37: 2185–2189.
Vistica DT, Kenney S, Hursey ML, Boyd MR. Cellular uptake as a determinant of cytotoxicity of quaternized ellipticines to human brain tumor cells. Biochem Biophys Res Commun 1994; 200: 1762–1768.
Shoemaker RH, Balaschak MS, Alexander MR, Boyd MR. Antitumor activity of 9-C1-2- methylellipticinium acetate against human brain tumor xenografts. Oncol Rep 1995; 2: 663–667.
Pettit OR, Inoue M, Kamano Y, Herald DL, Arm C, Dufresne C, Christie ND, Schmidt JM, Doubek DL, Krupa TS. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J Am Chem Soc 1988; 110: 2006–2007.
Pettit GR, Kamano Y, Inoue M, Dufresne C, Boyd MR, Herald CL, Schmidt JM, Dubek DL, Christie ND. Antineoplastic agents 214. Isolation and structure of cephalostatins 7–9. J Org Chem 1992; 57: 429–431.
Fuller RW, Cardellina JHII, Kato Y, Brinen LS, Clardy J, Snader KM, Boyd MR. A pentahal- ogenated monoterpene from the red alga, Portieria hornemannii, produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 1992; 35: 3007–3011.
Fuller RW, Cardellina JH II, Jurek J, Scheuer PJ, Alvarado-Lindner B, McGuire M, Gray GN, Steiner JR, Clardy J, Menez E, Shoemaker RH, Newman DJ, Snader KM, Boyd MR. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga, Portieria hornemanii. J Med Chem 1994; 37: 4407–4411.
Alvarez M, Paull K, Monks A, Hose C, Lee J-S, Weinstein J, Grever MR, Bates S, Fojo T. Generation of a drug resistance profile by quantitation of mdr-1 /P-glycoprotein expression in the cell lines of the NCI anticancer drug screen. J Clin Invest 1995; 5: 2205–2214.
Lee J-S, Paull KP, Hose C, Monks A, Alvarez M, Grever M, Fojo T, Bates S. Rohodamine efflux patterns predict PGP substrates in the NCI drug screen. Mol Pharm 1994; 46: 627–638.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer Science+Business Media New York
About this chapter
Cite this chapter
Boyd, M.R. (1997). The NCI In Vitro Anticancer Drug Discovery Screen. In: Teicher, B.A. (eds) Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4615-8152-9_2
Download citation
DOI: https://doi.org/10.1007/978-1-4615-8152-9_2
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-4615-8154-3
Online ISBN: 978-1-4615-8152-9
eBook Packages: Springer Book Archive