Skip to main content

Prohibitin Signaling at the Kidney Filtration Barrier

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

  • 6252 Accesses

Abstract

The kidney filtration barrier consists of three well-defined anatomic layers comprising a fenestrated endothelium, the glomerular basement membrane (GBM) and glomerular epithelial cells, the podocytes. Podocytes are post-mitotic and terminally differentiated cells with primary and secondary processes. The latter are connected by a unique cell-cell contact, the slit diaphragm. Podocytes maintain the GBM and seal the kidney filtration barrier to prevent the onset of proteinuria. Loss of prohibitin-1/2 (PHB1/2) in podocytes results not only in a disturbed mitochondrial structure but also in an increased insulin/IGF-1 signaling leading to mTOR activation and a detrimental metabolic switch. As a consequence, PHB-knockout podocytes develop proteinuria and glomerulosclerosis and eventually loss of renal function. In addition, experimental evidence suggests that PHB1/2 confer additional, extra-mitochondrial functions in podocytes as they localize to the slit diaphragm and thereby stabilize the unique intercellular contact between podocytes required to maintain an effective filtration barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pavenstädt H. The charge for going by foot: modifying the surface of podocytes. Exp Nephrol. 1998;6:98–103.

    Article  PubMed  Google Scholar 

  2. Elger M, Kriz W. Podocytes and the development of segmental glomerulosclerosis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc – Eur Ren Assoc. 1998;13:1368–73.

    CAS  Google Scholar 

  3. Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998;54:687–97.

    Article  CAS  PubMed  Google Scholar 

  4. Höhne M, Ising C, Hagmann H, et al. Light microscopic visualization of podocyte ultrastructure demonstrates oscillating glomerular contractions. Am J Pathol. 2013;182:332–8.

    Article  PubMed  Google Scholar 

  5. Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol JASN. 2003;14:806–14.

    Article  PubMed  Google Scholar 

  6. Kriz W, Lemley KV. The role of the podocyte in glomerulosclerosis. Curr Opin Nephrol Hypertens. 1999;8:489–97.

    Article  CAS  PubMed  Google Scholar 

  7. Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.

    Article  PubMed  Google Scholar 

  8. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69:2131–47.

    Article  CAS  PubMed  Google Scholar 

  9. Kerjaschki D. Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases. Kidney Int. 1994;45:300–13.

    Article  CAS  PubMed  Google Scholar 

  10. Salant DJ. The structural biology of glomerular epithelial cells in proteinuric diseases. Curr Opin Nephrol Hypertens. 1994;3:569–74.

    Article  CAS  PubMed  Google Scholar 

  11. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42:1050–65.

    Article  CAS  PubMed  Google Scholar 

  12. Asanuma K, Yanagida-Asanuma E, Takagi M, et al. The role of podocytes in proteinuria. Nephrol Carlton Vic. 2007;12(Suppl 3):S15–20.

    Article  CAS  Google Scholar 

  13. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis Off J Natl Kidney Found. 1998;32:S112–9.

    Article  CAS  Google Scholar 

  14. Benzing T. Signaling at the slit diaphragm. J Am Soc Nephrol JASN. 2004;15:1382–91.

    Article  PubMed  Google Scholar 

  15. Huber TB, Schermer B, Müller RU, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A. 2006;103:17079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Machuca E, Hummel A, Nevo F, et al. Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int. 2009;75:727–35.

    Article  CAS  PubMed  Google Scholar 

  17. Goodman MB, Ernstrom GG, Chelur DS, et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature. 2002;415:1039–42.

    Article  CAS  PubMed  Google Scholar 

  18. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8:870–9.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11:655–67.

    Article  CAS  PubMed  Google Scholar 

  20. Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192:7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX, Marks AR. Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep. 2015;5:11427.

    Google Scholar 

  22. O’Toole JF. Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renov Dis. 2014;7:57–67.

    Article  Google Scholar 

  23. Che R, Yuan Y, Huang S, et al. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Phys Renal Phys. 2014;306:F367–78.

    CAS  Google Scholar 

  24. Bartlett P, Keegan J, Schaefer H. Mechanism of aminonucleoside-induced nephrosis in the rat. III Kidney mitochondrial phosphorylation and dephosphorylation activity. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1963;112:96–101.

    Article  CAS  Google Scholar 

  25. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol JASN. 2007;18:2773–80.

    Article  CAS  PubMed  Google Scholar 

  26. López LC, Schuelke M, Quinzii CM, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79:1125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jansen JJ, Maassen JA, van der Woude FJ, et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J Am Soc Nephrol JASN. 1997;8:1118–24.

    CAS  PubMed  Google Scholar 

  28. Kurogouchi F, Oguchi T, Mawatari E, et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am J Nephrol. 1998;18:551–6.

    Article  CAS  PubMed  Google Scholar 

  29. Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet. 2009;18:R185–94.

    Article  CAS  PubMed  Google Scholar 

  30. Peng M, Jarett L, Meade R, et al. Mutant prenyltransferase-like mitochondrial protein (PLMP) and mitochondrial abnormalities in kd/kd mice. Kidney Int. 2004;66:20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hagiwara M, Yamagata K, Capaldi RA, et al. Mitochondrial dysfunction in focal segmental glomerulosclerosis of puromycin aminonucleoside nephrosis. Kidney Int. 2006;69:1146–52.

    Article  CAS  PubMed  Google Scholar 

  32. Kakimoto M, Inoguchi T, Sonta T, et al. Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes. 2002;51:1588–95.

    Article  CAS  PubMed  Google Scholar 

  33. Holthöfer H, Kretzler M, Haltia A, et al. Altered gene expression and functions of mitochondria in human nephrotic syndrome. FASEB J Off Publ Fed Am Soc Exp Biol. 1999;13:523–32.

    Google Scholar 

  34. Bock F, Shahzad K, Wang H, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci U S A. 2013;110:648–53.

    Article  CAS  PubMed  Google Scholar 

  35. Abe Y, Sakairi T, Kajiyama H, et al. Bioenergetic characterization of mouse podocytes. Am J Phys Cell Phys. 2010;299:C464–76.

    Article  CAS  Google Scholar 

  36. Ozawa S, Ueda S, Imamura H, et al. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci Rep. 2015;5:18575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brinkkoetter PT, Olivier P, Wu JS, et al. Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J Clin Invest. 2009;119:3089–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brinkkoetter PT, Pippin JW, Shankland SJ. Cyclin I-Cdk5 governs survival in post-mitotic cells. Cell Cycle Georget Tex. 2010;9:1729–31.

    Article  CAS  Google Scholar 

  39. Brinkkoetter PT, Wu JS, Ohse T, et al. p35, the non-cyclin activator of Cdk5, protects podocytes against apoptosis in vitro and in vivo. Kidney Int. 2010;77:690–9.

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi Y, Pippin JW, Hagmann H, et al. Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes. Am J Phys Renal Phys. 2012;302:F1161–71.

    CAS  Google Scholar 

  41. Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008;27:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185–92.

    Article  CAS  PubMed  Google Scholar 

  43. MacVicar T, Langer T. OPA1 processing in cell death and disease – the long and short of it. J Cell Sci. 2016;129:2297–306.

    Article  CAS  PubMed  Google Scholar 

  44. Duvezin-Caubet S, Jagasia R, Wagener J, et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem. 2006;281:37972–9.

    Article  CAS  PubMed  Google Scholar 

  45. Merkwirth C, Dargazanli S, Tatsuta T, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22:476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berger KH, Yaffe MP. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18:4043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tatsuta T, Model K, Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell. 2005;16:248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ising C, Koehler S, Brähler S, et al. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure. EMBO Mol Med. 2015;7:275–87.

    Google Scholar 

  49. Barisoni L, Madaio MP, Eraso M, et al. The kd/kd mouse is a model of collapsing glomerulopathy. J Am Soc Nephrol JASN. 2005;16:2847–51.

    Article  PubMed  Google Scholar 

  50. Hotta O, Inoue CN, Miyabayashi S, et al. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. Kidney Int. 2001;59:1236–43.

    Article  CAS  PubMed  Google Scholar 

  51. Güçer S, Talim B, Aşan E, et al. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc. 2005;8:710–7.

    Article  Google Scholar 

  52. Markowitz GS, Appel GB, Fine PL, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol JASN. 2001;12:1164–72.

    CAS  PubMed  Google Scholar 

  53. Kawakami T, Gomez IG, Ren S, et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol JASN. 2015;26:1040–52.

    Article  CAS  PubMed  Google Scholar 

  54. Liu D, Lin Y, Kang T, et al. Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS One. 2012;7:e34315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schleicher M, Shepherd BR, Suarez Y, et al. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol. 2008;180:101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kathiria AS, Butcher LD, Feagins LA, et al. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One. 2012;7:e31231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Merkwirth C, Martinelli P, Korwitz A, et al. Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration. PLoS Genet. 2012;8:e1003021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baris OR, Klose A, Kloepper JE, et al. The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells. Stem Cells Dayt Ohio. 2011;29:1459–68.

    CAS  Google Scholar 

  59. Artal-Sanz M, Tavernarakis N. Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature. 2009;461:793–7.

    Article  CAS  PubMed  Google Scholar 

  60. Coward RJM, Welsh GI, Yang J, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54:3095–102.

    Article  CAS  PubMed  Google Scholar 

  61. Bridgewater DJ, Ho J, Sauro V, et al. Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway. Kidney Int. 2005;67:1308–14.

    Article  CAS  PubMed  Google Scholar 

  62. Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ito N, Nishibori Y, Ito Y, et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest J Tech Methods Pathol. 2011;91:1584–95.

    Article  CAS  Google Scholar 

  65. Daniel C, Ziswiler R, Frey B, et al. Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative. Exp Nephrol. 2000;8:52–62.

    Article  CAS  PubMed  Google Scholar 

  66. Vollenbröker B, George B, Wolfgart M, et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Phys Renal Phys. 2009;296:F418–26.

    Google Scholar 

  67. George B, Vollenbröker B, Saleem MA, et al. GSK3β inactivation in podocytes results in decreased phosphorylation of p70S6K accompanied by cytoskeletal rearrangements and inhibited motility. Am J Phys Renal Phys. 2011;300:F1152–62.

    CAS  Google Scholar 

  68. Fusaro G, Dasgupta P, Rastogi S, et al. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003;278:47853–61.

    Article  CAS  PubMed  Google Scholar 

  69. Supale S, Thorel F, Merkwirth C, et al. Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development. Diabetes. 2013;62:3488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Delage-Mourroux R, Martini PG, Choi I, et al. Analysis of estrogen receptor interaction with a repressor of estrogen receptor activity (REA) and the regulation of estrogen receptor transcriptional activity by REA. J Biol Chem. 2000;275:35848–56.

    Article  CAS  PubMed  Google Scholar 

  71. Wang S, Fusaro G, Padmanabhan J, et al. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene. 2002;21:8388–96.

    Article  CAS  PubMed  Google Scholar 

  72. Park S-E, Xu J, Frolova A, et al. Genetic deletion of the repressor of estrogen receptor activity (REA) enhances the response to estrogen in target tissues in vivo. Mol Cell Biol. 2005;25:1989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kurtev V, Margueron R, Kroboth K, et al. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem. 2004;279:24834–43.

    Article  CAS  PubMed  Google Scholar 

  74. Chiu C-F, Ho M-Y, Peng J-M, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene. 2013;32:777–87.

    Article  CAS  PubMed  Google Scholar 

  75. Ande SR, Mishra S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun. 2009;390:1023–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ising C, Bharill P, Brinkkoetter S, et al. Prohibitin-2 depletion unravels extra-mitochondrial functions at the kidney filtration barrier. Am J Pathol. 2016;186:1128–39.

    Article  CAS  PubMed  Google Scholar 

  77. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  78. Shih NY, Li J, Karpitskii V, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  CAS  PubMed  Google Scholar 

  79. Philippe A, Nevo F, Esquivel EL, et al. Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol JASN. 2008;19:1871–8.

    Article  CAS  PubMed  Google Scholar 

  80. Winn MP, Conlon PJ, Lynn KL, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.

    Article  CAS  PubMed  Google Scholar 

  81. Schermer B, Benzing T. Lipid-protein interactions along the slit diaphragm of podocytes. J Am Soc Nephrol JASN. 2009;20:473–8.

    Article  CAS  PubMed  Google Scholar 

  82. Müller R-U, Zank S, Fabretti F, et al. Caenorhabditis elegans, a model organism for kidney research: from cilia to mechanosensation and longevity. Curr Opin Nephrol Hypertens. 2011;20:400–8.

    Article  PubMed  Google Scholar 

  83. Zhang Y, Ma C, Delohery T, et al. Identification of genes expressed in C elegans touch receptor neurons. Nature. 2002;418:331–5.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang S, Arnadottir J, Keller C, et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol CB. 2004;14:1888–96.

    Article  CAS  PubMed  Google Scholar 

  85. Ande SR, Gu Y, Nyomba BLG, et al. Insulin induced phosphorylation of prohibitin at tyrosine 114 recruits Shp1. Biochim Biophys Acta. 1793;2009:1372–8.

    Google Scholar 

  86. Lourenço AB, Muñoz-Jiménez C, Venegas-Calerón M, et al. Analysis of the effect of the mitochondrial prohibitin complex, a context-dependent modulator of longevity, on the C. elegans metabolome. Biochim Biophys Acta. 2015;1847:1457–68.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wai T, GarcĂ­a-Prieto J, Baker MJ, et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science. 2015;350:aad0116.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Brinkkoetter MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ising, C., Brinkkoetter, P.T. (2017). Prohibitin Signaling at the Kidney Filtration Barrier. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_29

Download citation

Publish with us

Policies and ethics