Abstract
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Armitage, P., Berry, G., & Matthews, J. N. S. (2002). Statistical methods in medical research (4th ed.). Oxford: Blackwell.
Benton, D., & Krishnamoorthy, K. (2003). Computing discrete mixtures of continuous distributions: Noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient. Computational Statistics & Data Analysis, 43, 249–267.
Bonett, D. G., & Price, R. M. (2005). Inferential methods for the tetrachoric correlation coefficient. Journal of Educational & Behavioral Statistics, 30, 213–225.
Bredenkamp, J. (1969). Über die Anwendung von Signifikanztests bei theorie-testenden Experimenten [On the use of significance tests in theory-testing experiments]. Psychologische Beiträge, 11, 275–285.
Brown, M. B., & Benedetti, J. K. (1977). On the mean and variance of the tetrachoric correlation coefficient. Psychometrika, 42, 347–355.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
Demidenko, E. (2007). Sample size determination for logistic regression revisited. Statistics in Medicine, 26, 3385–3397.
Demidenko, E. (2008). Sample size and optimal design for logistic regression with binary interaction. Statistics in Medicine, 27, 36–46.
Dunlap, W. P., Xin, X., & Myers, L. (2004). Computing aspects of power for multiple regression. Behavior Research Methods, Instruments, & Computers, 36, 695–701.
Dunn, O. J., & Clark, V. A. (1969). Correlation coefficients measured on the same individuals. Journal of the American Statistical Association, 64, 366–377.
Dupont, W. D., & Plummer, W. D. (1998). Power and sample size calculations for studies involving linear regression. Controlled Clinical Trials, 19, 589–601.
Erdfelder, E. (1984). Zur Bedeutung und Kontrolle des beta-Fehlers bei der inferenzstatistischen Prüfung log-linearer Modelle [On significance and control of the beta error in statistical tests of log-linear models]. Zeitschrift für Sozialpsychologie, 15, 18–32.
Erdfelder, E., Faul, F., & Buchner, A. (2005). Power analysis for categorical methods. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 1565–1570). Chichester, U.K.: Wiley.
Erdfelder, E., Faul, F., Buchner, A., & Cüpper, L. (in press). Effektgröße und Teststärke [Effect size and power]. In H. Holling & B. Schmitz (Eds.), Handbuch der Psychologischen Methoden und Evaluation. Göttingen: Hogrefe.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
Friese, M., Bluemke, M., & Wänke, M. (2007). Predicting voting behavior with implicit attitude measures: The 2002 German parliamentary election. Experimental Psychology, 54, 247–255.
Gatsonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and sample size calculations. Psychological Bulletin, 106, 516–524.
Hays, W. L. (1972). Statistics for the social sciences (2nd ed.). New York: Holt, Rinehart & Winston.
Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 1623–1634.
Lee, Y.-S. (1972). Tables of upper percentage points of the multiple correlation coefficient. Biometrika, 59, 175–189.
Lyles, R. H., Lin, H.-M., & Williamson, J. M. (2007). A practical approach to computing power for generalized linear models with nominal, count, or ordinal responses. Statistics in Medicine, 26, 1632–1648.
Mendoza, J. L., & Stafford, K. L. (2001). Confidence intervals, power calculation, and sample size estimation for the squared multiple correlation coefficient under the fixed and random regression models: A computer program and useful standard tables. Educational & Psychological Measurement, 61, 650–667.
Nosek, B. A., & Smyth, F. L. (2007). A multitrait—multimethod validation of the Implicit Association Test: Implicit and explicit attitudes are related but distinct constructs. Experimental Psychology, 54, 14–29.
Perugini, M., O’Gorman, R., & Prestwich, A. (2007). An ontological test of the IAT: Self-activation can increase predictive validity. Experimental Psychology, 54, 134–147.
Rindskopf, D. (1984). Linear equality restrictions in regression and loglinear models. Psychological Bulletin, 96, 597–603.
Sampson, A. R. (1974). A tale of two regressions. Journal of the American Statistical Association, 69, 682–689.
Shieh, G. (2001). Sample size calculations for logistic and Poisson regression models. Biometrika, 88, 1193–1199.
Shieh, G., & Kung, C.-F. (2007). Methodological and computational considerations for multiple correlation analysis. Behavior Research Methods, 39, 731–734.
Signorini, D. F. (1991). Sample size for Poisson regression. Biometrika, 78, 446–450.
Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245–251.
Steiger, J. H., & Fouladi, R. T. (1992). R2: A computer program for interval estimation, power calculations, sample size estimation, and hypothesis testing in multiple regression. Behavior Research Methods, Instruments, & Computers, 24, 581–582.
Tsujimoto, S., Kuwajima, M., & Sawaguchi, T. (2007). Developmental fractionation of working memory and response inhibition during childhood. Experimental Psychology, 54, 30–37.
Whittemore, A. S. (1981). Sample size for logistic regression with small response probabilities. Journal of the American Statistical Association, 76, 27–32.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Manuscript preparation was supported by Grant SFB 504 (Project A12) from the Deutsche Forschungsgemeinschaft. We thank two anonymous reviewers for valuable comments on a previous version of the manuscript.
Rights and permissions
About this article
Cite this article
Faul, F., Erdfelder, E., Buchner, A. et al. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods 41, 1149–1160 (2009). https://doi.org/10.3758/BRM.41.4.1149
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/BRM.41.4.1149