Skip to main content

Advertisement

Log in

The Mechanisms for Genetic Diversity of Baikal Endemic Amphipod Gmelinoides fasciatus: Relationships between the Population Processes and Paleoclimatic History of the Lake

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Amphipods of the species Gmelinoides fasciatus are one of the dominant species in the littoral zone community of Lake Baikal. Earlier, on the basis of the analysis of the mitochondrial COX1 gene, four isolated populations within the species range were identified, between which there were no distinct geographical barriers. In the present study, a phylogenetic reconstruction of the evolutionary history of G. fasciatus with the molecular clock hypothesis is carried out. The population divergence time is dated back to the onset of global climate changes on the Pleistocene–Pliocene boundary at 1.8–2.3 Ma. As a result, the estimated substitution rate in the COX1 gene for G. fasciatus was 1.2–2.4% of substitutions per Myr, which corresponded to the values determined for other groups of invertebrates. It was demonstrated that geographical barriers that formed the populations of G. fasciatus periodically appeared and disappeared in the past, resulting from climate changes associated with the periods of global cooling and warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozhova, O.M. and Izmest’eva, L.R., Lake Baikal: Evolution and Biodiversity, Leiden: Backhuys, 1998.

    Google Scholar 

  2. Zaidykov, I.Yu., Maior, T.Yu., Sukhanova, L.V., et al., MtDNA polymorphism of Lake Baikal Epischura–an endemic key species of the plankton community, Russ. J. Genet., 2015, vol. 51, no. 9, pp. 935–937. https://doi.org/10.1134/S102279541508013X.

    Article  CAS  Google Scholar 

  3. Teterina, V.I., Sukhanova, L.V., and Kiril’chik, S.V., Microsatellite DNA polymorphism in the endemic fish of the Lake Baikal–the golomyanka (Comephorus lacepede, 1801), Ekol. Genet., 2007, vol. 2, pp. 50–57.

    Google Scholar 

  4. Teterina, V.I., Sukhanova, L.V., Bogdanov, B.E., et al., Genetic polymorphism of a pelagic fish species, little Baikal oilfish Comephorus dybowski, deduced from analysis of microsatellite loci, Russ. J. Genet., 2005, vol. 41, no. 7, pp. 750–754.

    Article  CAS  Google Scholar 

  5. Teterina, V.I., Sukhanova, L.V., and Kirilchik, S.V., Molecular divergence and speciation of Baikal oilfish (Comephoridae): facts and hypotheses, Mol. Phylogenet. Evol., 2010, vol. 56, no. 1, pp. 336–342. doi 10.1016/j.ympev. 2010.04.001

    Article  PubMed  Google Scholar 

  6. Peretolchina, T.E., Bukin, Yu.S., Sitnikova, T.Ya., and Sherbakov, D.Yu., Genetic differentiation of the endemic Baikalian mollusk Baicalia carinata (Mollusca, Caenogastropoda), Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1400–1407.

    Article  CAS  Google Scholar 

  7. Fazalova, V., Nevado, B., Peretolchina, T., et al., When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates, BMC Evol. Biol., 2010, vol. 10, no. 320, pp. 1–12. doi 10.1186/1471-2148-10-320

    Google Scholar 

  8. Daneliya, M.E., Kamaltynov, R.M., and Vainola, R., Phylogeography and systematics of Acanthogammarus s. str., giant amphipod crustaceans from Lake Baikal, Zool. Scripta, 2011, vol. 40, no. 6, pp. 623–637. doi 10.1111/j.1463-6409.2011.00490.x

    Article  Google Scholar 

  9. Mashiko, K., Kamaltynov, R.M., Shervakov, D., and Morino, H., Genetic separation of gammarid (Eulimnogammarus cyaneus) populations by localized topographic changes in ancient Lake Baikal, Arch. Hydrobiol., 1997, vol. 139, no. 3, pp. 379–387.

    Google Scholar 

  10. Bukin, Ju.S., Pudovkina, T.A., Sherbakov, D.Ju., and Sitnikova, T.Ya., Genetic flows in a structured onedimensional population: simulation and real data on Baikalian polychaetes M. godlewskii, In Silico Biol., 2007, vol. 7, no. 3, pp. 277–284.

    PubMed  CAS  Google Scholar 

  11. Pudovkina, T.A., Sitnikova, T.Ya., Matveev, A.N., and Shcherbakov, D.Yu., Kin relations of Baikalian polychaetes of the genus Manayunkia (Polychaeta: Sedentaria: Sabellidae) inferred from analysis of CO1 with the analysis of the settlement history, Ekol. Genet., 2014, vol. 12, no. 3, pp. 32–40.

    Google Scholar 

  12. Kravtsova, L.S., Bukin, Yu.S., Peretolchina, T.E., and Shcherbakov, D.Yu., Genetic differentiation of populations of Baikal endemic Sergentia baicalensis Tshern. (Diptera, Chironomidae), Russ. J. Genet., 2015, vol. 51, no. 7, pp. 707–710.

    Article  CAS  Google Scholar 

  13. Grant, V., The Evolutionary Process: A Critical Review of Evolutionary Theory, New York: Columbia Univ. Press, 1985.

    Google Scholar 

  14. Nevado, B., Mautner, S., Sturmbauer, C., and Verheyen, E., Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species, Mol. Ecol., 2013, vol. 22, no. 15, pp. 3933–3948. doi 10.1111/mec.12374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Duftner, N., Sefc, K.M., Koblmüller, S., et al., Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika, Mol. Ecol., 2006, vol. 15, no. 9, pp. 2381–2395. doi 10.1111/j.1365-294X.2006.02949.x

    Article  PubMed  CAS  Google Scholar 

  16. Timoshkin, O.A., Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Annotated List of Fauna of Lake Baikal and Its Catchment Basin), vol. 1: Ozero Baikal (Lake Baikal), book 1, Novosibirsk: Nauka, 2001.

    Google Scholar 

  17. Sherbakov, D.Yu., Kamaltynov, R.M., Ogarkov, J.B., and Verheyen, E., Patterns of evolutionary change in Baikalian Gammaridae inferred from DNA sequences (Crustacea, Amphipoda), Mol. Phylogeny Evol., 1998, vol. 10, no. 2, pp. 160–167. doi 10.1006/mpev. 1997.0482

    Article  CAS  Google Scholar 

  18. Macdonald, K.S., Yampolsky, L., and Duffy, J.E., Molecular and morphological evolution of the amphipod radiation of Lake Baikal, Mol. Phylogenet. Evol., 2005, vol. 35, no. 2, pp. 323–343. doi 10.1016/j.ympev. 2005.01.013

    Article  PubMed  CAS  Google Scholar 

  19. Matafonov, D.V., Itigilova, M.Ts., Kamaltynov, R.M., and Faleichik, L.M., The Baikal endemic Gmelinoides fasciatus (Micruropodidae, Gammaroidea, Amphipoda) in Lake Arachley, Zool. Zh., 2005, vol. 84, no. 3, pp. 321–329.

    Google Scholar 

  20. Matafonov, D.V., Itigilova, M.Ts., and Kamaltynov, R.M., The expansion of the Gmelinoides fasciatus (Stebbing, 1899) reservoirs of the Eastern Transbaikalia (by the example of Lake Arakhley), Sib. Ekol. Zh., 2006, vol. 5, pp. 595–601.

    Google Scholar 

  21. Berezina, N.A. and Panov, V.E., The immigration of the Baikal amphipod Gmelinoides fasciatus (Amphipoda, Crustacea) in Lake Onega, Zool. Zh., 2003, vol. 82, no. 6, pp. 731–734.

    Google Scholar 

  22. Gomanenko, G.V., Kamaltynov, R.M., Kuzmenkova, Zh.V., et al., Population structure of the Baikalian amphipod Gmelinoides fasciatus (Stebbing), Russ. J. Genet., 2005, vol. 41, no. 8, pp. 907–912. https://doi.org/10.1007/s11177-005-0179-5.

    Article  CAS  Google Scholar 

  23. Kachukov, V., Lykov, D., Pevzner, L., et al., Continuous recording of climatic changes in the sediments of Lake Baikal over the last 5 million years, Geol. Geofiz., 1998, vol. 39, no. 2, pp. 139–156.

    Google Scholar 

  24. Goldberg, E.L., Chebykin, E.P., Vorob’eva, S.S., and Grachev, M.A., Uranium signals of paleoclimate humidity recorded in sediments of Lake Baikal, Dokl. Earth Sci., 2005, vol. 400, nos. 1–6, pp. 52–56.

    CAS  Google Scholar 

  25. Zhuchenko, N.A., Chebykin, E.P., Goldberg, E.L., and Stepanova, O.G., High-resolution record of uranium isotopic composition of Paleo-Baikal water during the last 100 ka, Dokl. Earth Sci. 2007, vol. 414, nos. 1–6, pp. 630–633.

    Article  CAS  Google Scholar 

  26. Goldberg, E.L., Chebykin, E.P., Zhuchenko, N.A., et al., Uranium isotopes as proxies of the environmental history of the Lake Baikal watershed (East Siberia) during the past 150 ka, Paleogeogr., Paleoclimatol., Paleoecol., 2010, vol. 294, pp. 16–29. doi 10.1016/j.palaeo.2009.08.030

    Article  Google Scholar 

  27. Urabe, A., Tateishi, M., Inouchi, Y., et al., Lake-level changes during the past 100000 years at Lake Baikal, Southern Siberia, Quat. Res., 2004, vol. 62, no. 2, pp. 214–222. doi 10.1016/j.yqres.2004.06.002

    Article  Google Scholar 

  28. Bazikalova, A.Ya., Amphipods of Lake Baikal, in Trudy Baikal’skoi limnologicheskoi stantsii AN SSSR (Proceedings of the Baikal Limnological Station of Academy of Sciences of the Soviet Union), 1945, vol.11.

  29. Folmer, O., DNA primer for amplification of mitochondrial cytochrome c oxidase subunite I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299. doi 10.1007/BF00163806

    PubMed  CAS  Google Scholar 

  30. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  31. Villesen, P., FaBox: an online toolbox for fasta sequences, Mol. Ecol. Notes, 2007, vol. 7, no. 6, pp. 965–968. doi 10.1111/j.1471-8286.2007.01821.x

    Article  CAS  Google Scholar 

  32. Posada, D., JModelTest: phylogenetic model averaging, Mol. Biol. Evol., 2008, vol. 25, no. 7, pp. 1253–1256. doi 10.1093/molbev/msn083

    Article  PubMed  CAS  Google Scholar 

  33. Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 1, p. 214. doi 10.1186/1471-2148-7-214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tajima, D., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, no. 3, pp. 585–595.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Fu, Y.X. and Li, W.H., Statistical tests of neutrality of mutations, Genetics, 1993, vol. 133, no. 3, pp. 693–709.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Ramos-Onsins, S.E. and Rozas, J., Statistical properties of new neutrality tests against population growth, Mol. Biol. Evol., 2002, vol. 19, no. 12, pp. 2092–2100. doi 10.1093/oxfordjournals.molbev.a004034

    Article  PubMed  CAS  Google Scholar 

  37. Fay, J.C. and Wu, C.I., Hitchhiking under positive Darwinian selection, Genetics, 2000, vol. 155, no. 3, pp. 1405–1413.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Rozas, J., Sánchez-Del Barrio, J.C., Messeguer, X., and Rozas, R., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, vol. 19, no. 18, pp. 2496–2497. doi 10.1093/bioinformatics/btg359

    Article  PubMed  CAS  Google Scholar 

  39. Paradis, E., Pegas: an R package for population genetics with an integrated–modular approach, Bioinformatics, 2010, vol. 26, no. 3, pp. 419–420. doi 10.1093/bioinformatics/btp696

    Article  PubMed  CAS  Google Scholar 

  40. Villacorta, C., Jaume, D., Oromí, P., and Juan, C., Under the volcano: phylogeography and evolution of the cave-dwelling Palmorchestia hypogaea (Amphipoda, Crustacea) at La Palma (Canary Islands), BMC Biol., 2008, vol. 6, no. 1, p. 7. doi 10.1186/1741-7007-6-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Papadopoulou, A., Anastasiou, I., and Vogler, A.P., P. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration, Mol. Biol. Evol., 2010, vol. 27, no. 7, pp. 1659–1672. doi 10.1093/molbev/msq051

    Article  PubMed  CAS  Google Scholar 

  42. Andújar, C., Serrano, J., and Gómez-Zurita, J., Winding up the molecular clock in the genus Carabus (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation, BMC Evol. Biol., 2012, vol. 12, no. 1, p. 40. doi 10.1186/1471-2148-12-40

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaygorodova, I.A., Sherbakov, D.Y., and Martin, P., Molecular phylogeny of Baikalian Lumbriculidae (Oligochaeta): evidence for recent explosive speciation, Comp. Cytogenet., 2007, vol. 1, no. 1, pp. 71–84.

    Google Scholar 

  44. Kravtsova, L.S., Potemkina, T.G., Mekhanikova, I.V., et al., Spatial distribution of benthic invertebrate communities in the southern basin of Lake Baikal, Zool. Bespozvon., 2006, vol. 3, no. 1, pp. 65–76.

    Google Scholar 

  45. Hedrick, P.W., Genetics of Populations, Jones and Bartlett Learning, 2011.

    Google Scholar 

  46. Mats, V.D., Shcherbakov, D.Yu., and Efimova, I.M., Late Cretaceous Cenozoic history of the Baikal basin and the formation of unique biodiversity of Lake Baikal, Stratigr. Geol. Korrel., 2011, vol. 19, no. 4, pp. 405–461.

    Google Scholar 

  47. Arzhannikov, S.G., Ivanov, A.V., Arzhannikova, A.V., et al., Catastrophic events in the Quaternary outflow history of Lake Baikal, Earth-Sci. Rev., 2018, vol. 177, pp. 76–113.

    Article  Google Scholar 

  48. Kuz’menkova, Zh.V., Shcherbakov, D.Yu., and Smit, D.E., Diversity of microsporidia parasitizing the Baikal amphipods Gmelinoides fasciatus from different populations, Izv. Irkusk. Gos. Univ., Ser. Biol. Ekol., 2008, vol. 1, no. 2, pp. 56–61.

    Google Scholar 

  49. Osipov, E.Y. and Khlystov, O.M., Glaciers and meltwater flux to Lake Baikal during the Last Glacial Maximum, Paleogeogr., Paleoclimatol., Paleoecol., 2010, vol. 294, no. 1, pp. 4–15. doi 10.1016/j.palaeo.2010.01.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Bukin.

Additional information

Original Russian Text © Yu.S. Bukin, J.V. Petunina, D.Yu. Sherbakov, 2018, published in Genetika, 2018, Vol. 54, No. 9, pp. 1036–1046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukin, Y.S., Petunina, J.V. & Sherbakov, D.Y. The Mechanisms for Genetic Diversity of Baikal Endemic Amphipod Gmelinoides fasciatus: Relationships between the Population Processes and Paleoclimatic History of the Lake. Russ J Genet 54, 1059–1068 (2018). https://doi.org/10.1134/S1022795418090053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418090053

Keywords

Navigation