Skip to main content

Advertisement

Log in

Galectin-3 induces ovarian cancer cell survival and chemoresistance via TLR4 signaling activation

  • Original Article
  • Published:
Tumor Biology

Abstract

Paclitaxel resistance becomes common in patients with aggressive ovarian cancer and results in recurrence after conventional therapy. Galectin-3 is a multifunctional lectin associated with cell migration, cell proliferation, cell adhesion, and cell-cell interaction in tumor cells. Whether circulating galectin-3 is involved in paclitaxel resistance in ovarian cancer remains unknown. The current study investigated the effect of galectin-3 on toll-like receptor 4 (TLR4) signaling and thus paclitaxel resistance. With blood and cancer tissue samples obtained from 102 patients, we identified associations between serum galectin-3 level or TLR4 expression and paclitaxel resistance phenotype. In vitro, treatment with exogenous galectin-3 restored cell survival and migration of SKOV-3 and ES-2 cells was decreased by galectin-3 silencing and paclitaxel treatment. Furthermore, exogenous galectin-3 boosted expression of TLR4, MyD88, and p-p65, as well as interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF) release induced by paclitaxel. Moreover, galectin-3 inhibited the interaction between TLR4 and caveolin-1 (Cav-1) in SKOV-3 and ES-2 cells. In addition, overexpression of Cav-1 dampened the expression of MyD88 and p-p65 stimulated by galectin-3 and enhanced apoptosis in SKOV-3 cells under paclitaxel exposure. In summary, our study elucidated that exogenous galectin-3 might induce paclitaxel resistance through TLR4 signaling activation by inhibiting TLR4-Cav-1 interaction, revealing a novel insight into paclitaxel resistance induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen VW, Ruiz B, Killeen JL, Cote TR, Wu XC, Correa CN. Pathology and classification of ovarian tumors. Cancer. 2003;97:2631–42.

    Article  PubMed  Google Scholar 

  2. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27:161–74.

    PubMed  Google Scholar 

  3. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.

    Article  PubMed  Google Scholar 

  4. Stewart LM, Holman CD, Finn JC, Preen DB, Hart R. In vitro fertilization is associated with an increased risk of borderline ovarian tumours. Gynecol Oncol. 2013;129:372–6.

    Article  PubMed  Google Scholar 

  5. Smoter M, Bodnar L, Grala B, Stec R, Zieniuk K, Kozlowski W, et al. Tau protein as a potential predictive marker in epithelial ovarian cancer patients treated with paclitaxel/platinum first-line chemotherapy. J Exp Clin Cancer Res. 2013;32:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuo K, Eno ML, Im DD, Rosenshein NB, Sood AK. Clinical relevance of extent of extreme drug resistance in epithelial ovarian carcinoma. Gynecol Oncol. 2010;116:61–5.

    Article  CAS  PubMed  Google Scholar 

  7. Salani R, Kurman RJ, Giuntoli 2nd R, Gardner G, Bristow R, Wang TL, et al. Assessment of tp53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer. 2008;18:487–91.

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol. 2015;141:381–95.

    Article  CAS  PubMed  Google Scholar 

  9. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66:3859–68.

    Article  CAS  PubMed  Google Scholar 

  10. d’Adhemar CJ, Spillane CD, Gallagher MF, Bates M, Costello KM, Barry-O’Crowley J, et al. The MyD88+ phenotype is an adverse prognostic factor in epithelial ovarian cancer. PLoS One. 2014;9, e100816.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene. 2009;28:4353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song L, Tang JW, Owusu L, Sun MZ, Wu J, Zhang J. Galectin-3 in cancer. Clin Chim Acta. 2014;431:185–91.

    Article  CAS  PubMed  Google Scholar 

  13. Newlaczyl AU, Yu LG. Galectin-3—a jack-of-all-trades in cancer. Cancer Lett. 2011;313:123–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yilmaz H, Celik HT, Ozdemir O, Kalkan D, Namuslu M, Abusoglu S, et al. Serum galectin-3 levels in women with PCOS. J Endocrinol Invest. 2014;37:181–7.

    Article  CAS  PubMed  Google Scholar 

  15. Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17:7035–46.

    Article  CAS  PubMed  Google Scholar 

  16. Balan V, Wang Y, Nangia-Makker P, Kho D, Bajaj M, Smith D, et al. Galectin-3: a possible complementary marker to the PSA blood test. Oncotarget. 2013;4:542–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eliaz I. The role of galectin-3 as a marker of cancer and inflammation in a stage IV ovarian cancer patient with underlying pro-inflammatory comorbidities. Case Rep Oncol. 2013;6:343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 2015.

  19. Arad U, Madar-Balakirski N, Angel-Korman A, Amir S, Tzadok S, Segal O, et al. Galectin-3 is a sensor-regulator of toll-like receptor pathways in synovial fibroblasts. Cytokine. 2015;73:30–5.

    Article  CAS  PubMed  Google Scholar 

  20. Wang AC, Ma YB, Wu FX, Ma ZF, Liu NF, Gao R, et al. TLR4 induces tumor growth and inhibits paclitaxel activity in MyD88-positive human ovarian carcinoma. Oncol Lett. 2014;7:871–7.

    CAS  PubMed  Google Scholar 

  21. Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K, et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol. 2001;159:1635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang XM, Kim HP, Nakahira K, Ryter SW, Choi AM. The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol. 2009;182:3809–18.

    Article  CAS  PubMed  Google Scholar 

  23. Harazono Y, Kho DH, Balan V, Nakajima K, Hogan V, Raz A. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and p-glycoprotein signaling. Oncotarget. 2015;6:19592–604.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Luo M, Liang X, Wang D, Gu X, Duan C, et al. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One. 2014;9, e103482.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mirandola L, Yu Y, Cannon MJ, Jenkins MR, Rahman RL, Nguyen DD, et al. Galectin-3 inhibition suppresses drug resistance, motility, invasion and angiogenic potential in ovarian cancer. Gynecol Oncol. 2014;135:573–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hossein G, Keshavarz M, Ahmadi S, Naderi N. Synergistic effects of pectasol-c modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pac J Cancer Prev. 2013;14:7561–8.

    Article  PubMed  Google Scholar 

  27. Rajput S, Volk-Draper LD, Ran S. TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther. 2013;12:1676–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, DeNardo D, et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014;74:5421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schlegel A, Pestell RG, Lisanti MP. Caveolins in cholesterol trafficking and signal transduction: implications for human disease. Front Biosci. 2000;5:D929–937.

    Article  CAS  PubMed  Google Scholar 

  30. Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell. 2001;106:403–11.

    Article  CAS  PubMed  Google Scholar 

  31. Quann K, Gonzales DM, Mercier I, Wang C, Sotgia F, Pestell RG, et al. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle. 2013;12:1510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang XM, Kim HP, Song R, Choi AM. Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol. 2006;34:434–42.

    Article  CAS  PubMed  Google Scholar 

  33. Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol. 2006;177:4853–60.

    Article  CAS  PubMed  Google Scholar 

  34. Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, et al. Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol. 2013;191:6191–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81101959 and 81101958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zou.

Ethics declarations

This study was reviewed by the Ethics Committee of Xijing Hospital, the Fourth Military Medical University, and was performed in accordance with the Helsinki Declaration. Written informed consent was obtained from the patients enrolled in our study.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Ma, X., Chen, B. et al. Galectin-3 induces ovarian cancer cell survival and chemoresistance via TLR4 signaling activation. Tumor Biol. 37, 11883–11891 (2016). https://doi.org/10.1007/s13277-016-5038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5038-6

Keywords

Navigation