Skip to main content

Advertisement

The biotechnology and applications of antibody engineering

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The exquisite specificity of monoclonal antibodies (MAb) has long provided the potential for creating new reagents for the in vivo delivery of therapeutic drugs or toxins to defined cellular target sites or improved methods of diagnosis. However, many difficulties associated with their production, affinity, specificity, and use in vivo have largely confined their application to research or in vitro diagnostics. This situation is beginning to change with the recent developments in the applied molecular techniques that allow the engineering of the genes that encode antibodies rather than the manipulation of the intact antibodies themselves. Techniques, such as the polymerase chain reaction, have provided essential methods with which to generate and modify the genetic constituents of antibodies, allow their conjugation to toxins or drugs, provide ways of humanizing murine antibodies, and allow discrete modular antigen binding components to be produced. More recent developments of in vitro expression systems and powerful phage surface display technologies will without doubt play a major role in future antibody engineering and in the successful development of new diagnostic and therapeutic antibody-based reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horibata, K. and Harris, A.W. (1970) Mouse myelomas and lymphomas in culture.Exp. Cell Res. 60, 61–66.

    Article  PubMed  CAS  Google Scholar 

  2. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predetermined specificity.Nature 256, 495–497.

    Article  PubMed  CAS  Google Scholar 

  3. Borrebaeck, C. A. K., Danielsson, L., Ohlin, M., Carlsson, J., and Carlsson, R. (1990) The use ofin vitro immunization, cloning of variable regions, and SCID mice for the production of human monoclonal antibodies, inTherapeutic Monoclonal Antibodies (Borrebaeck, C. A. K. and Larrick, J. W., eds.), Stockton, New York, pp. 1–17.

    Google Scholar 

  4. Waldmann, T. A. (1991) Monoclonal antibodies in diagnosis and therapy.Science 252, 1657–1662.

    Article  PubMed  CAS  Google Scholar 

  5. Banchereau, J., DePaoli, P., Valle, A., Garcia, E., and Rousset, F. (1991) Long term human B cell lines dependent on interleukin 4 and anti CD40.Science 251, 70.

    Article  PubMed  CAS  Google Scholar 

  6. Bator, J. M. and Reading, C. L. (1990) Antibody mediated cancer diagnosis and therapy, inTherapeutic Monoclonal Antibodies (Borrebaeck, C. and Larrick, J., eds.), Stockton, New York, pp. 35–56.

    Google Scholar 

  7. Fanger, M. W. and Guyre, P. M. (1991) Bispecific antibodies for targeted cellular cytotoxicity.Trends Biotech. 9, 375–381.

    Article  CAS  Google Scholar 

  8. Clark, M., Gilliland, L., and Waldmann, H. (1988) Hybrid antibodies for therapy, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 31–49.

    Google Scholar 

  9. Lefranc, G. and Lefranc, M. P. (1991) Antibody engineering and perspectives in therapy.Biochemie 72, 639–649.

    Article  Google Scholar 

  10. Blakey, D. C., Wawrzynczak, E. J., Wallace, P. M., and Thorpe, P. E. (1988) Antibody toxin conjugates: a perspective, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 50–89.

    Google Scholar 

  11. Manevich, E. M., Tonevitsky, A. G., and Bergelson, L. D. (1986) The binding of B chain of ricin to Burkitts lymphoma cells.FEBS Lett. 194, 313–318.

    Article  PubMed  CAS  Google Scholar 

  12. Laurent, G., Kuhlein, E., Casellas, P., Canat, X., et al. (1986) Determination of the sensitivity of fresh leukemia cells to immunotoxins.Cancer Res. 46, 2289–2294.

    PubMed  CAS  Google Scholar 

  13. Youle, R. J., Newton, G., Wu, Y. N., Gadina, M., and Rybak, S. M (1993) Cytotoxic ribonucleases and chimeras in cancer therapy.Crit. Rev. Ther. Drug Carrier Syst 10(1), 1–28.

    PubMed  CAS  Google Scholar 

  14. Sandlie, I. and Michaelsen, T. E. (1991) Engineering monoclonal antibodies to determine the structural requirements for complement activation and complement mediated lysis.Mol. Immunol. 28(12), 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  15. Mendelsohn, J. (1988) Growth factor receptors as targets for antitumor therapy with monoclonal antibodies, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 147–160.

    Google Scholar 

  16. Winter, G. and Harris, W. J. (1993) Humanized antibodies (1993)Immunol. Today 14(6), 243–246.

    CAS  Google Scholar 

  17. Morrison, S. L., Canfield, S., Porter, S., Tan, L. K., Tao, M., and Wims, L. A. (1988) Production and characterization of genetically engineered antibody molecules.Clin. Chem. 34(9), 1668–1672.

    PubMed  CAS  Google Scholar 

  18. Jolliffe, L. K. (1993) Humanized antibodies: enhancing therapeutic utility through antibody engineering.Int Rev Immunol. 10(2), 241–250.

    Article  PubMed  CAS  Google Scholar 

  19. LoBuglio, A. F., Wheeler, R. H., Trang, J., Haynes, A., et al. (1989) Mouse/human chimeric monoclonal antibody in man: kinetics and immune response.Proc. Natl. Acad. Sci. USA 86, 4220–4224.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, A. Y., Robinson, R. R., Hellstrom, K. E., Murrey, E. D., et al. (1987) Chimeric mouse-human IgGl antibody that can mediate lysis of cancer cells.Proc. Natl. Acad. Sci. USA 84, 3439–3443.

    Article  PubMed  CAS  Google Scholar 

  21. Bright, S., Adair, J., and Secher, D. (1991) From laboratory to clinic: the development of an immunological reagent.Immunol. Today 12(4), 130–136.

    Article  PubMed  CAS  Google Scholar 

  22. Shagan, B. G., Dorai, H., Saltzgaber-Muller, J., Toneguzzo, F., Guindon, C. A., et al. (1986) A genetically engineered murine/human chimeric antibody retains specificity for human tumor associated antigen.J. Immunol. 137, 1066–1072.

    Google Scholar 

  23. Bruggemann, M., Williams, G. T., Bindon, C. I., Teale, C., Clark, M. R., et al. (1987) Comparison of effector functions of human immunoglobulins using a matched set of chimeric antibodies.J. Exp. Med. 166, 1351–1355.

    Article  PubMed  CAS  Google Scholar 

  24. Bruggemann, M., Winter, G., Waldmann, H., and Neuberger, M. S. (1989) The immunogenicity of chimeric antibodies.J. Exp. Med. 170, 2153–2159.

    Article  PubMed  CAS  Google Scholar 

  25. Verhoeyen, M., Milstein, C., and Winter, G. (1988) Reshaping human antibodies: Grafting an anti lysozyme activity.Science 239, 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter G. (1986) Replacing the complementarity determining region in a human antibody with those from a mouse.Nature 321, 522–525.

    Article  PubMed  CAS  Google Scholar 

  27. Reichmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy.Nature 332, 323–327.

    Article  Google Scholar 

  28. Tempest, P. R., Bremmer, P., Lambert, M., Taylor, G., et al. (1991) Reshaping a human monoclonal antibody to inhibit respiratory syncytical virus infectionin vivo.Bio/Technology 9, 266–271.

    Article  PubMed  CAS  Google Scholar 

  29. Colnaghi, M. I., Menard, S., and Canevari, S. (1993) Evolution of the therapeutic use of new monoclonal antibodies.Curr. Opin. Oncol. 5(6), 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  30. Winter, G. and Milstein, C. (1991) Man-made antibodies.Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  31. Cunningham, C. and Harris, W. J. (1992) Antibody engineering-how to be human.Trends Biotechnol. 10, 112–118.

    Article  PubMed  CAS  Google Scholar 

  32. Roberts, S., Cheetham, J., and Rees, A. R. (1987) Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering.Nature 328, 731–733.

    Article  PubMed  CAS  Google Scholar 

  33. Kussie, P. H., Parhami-Seren, B., Wysocki, L. J., and Margolies, M. N. (1994) A single engineered amino acid substitution changes antibody fine specificity.J. Immunol. 152(1), 146–152.

    PubMed  CAS  Google Scholar 

  34. Xiang, J., Chen, Z., Delbaere, L. T., and Liu, E. (1993) Differences in antigen binding affinity caused by a single amino acid substitution in the variable region of the heavy chain.Immunol. Cell. Biol. 71(4), 239–247.

    Article  PubMed  CAS  Google Scholar 

  35. Queen, C., Schneider, W. P., Selick, H. E., Payne, P.W., et al. (1989) A humanized antibody that binds to the interleukin 2 receptor.Proc. Natl. Acad. Sci. USA 86, 1029–1034.

    Article  Google Scholar 

  36. Co, M. S. and Queen, C. (1991) Humanized antibodies for therapy.Nature 351, 501–505.

    Article  PubMed  CAS  Google Scholar 

  37. Iverson, B. L., Iverson, S. A., Roberts, V. A., Getzoff, E. D., Tainer, J. A., Benkovic, S. J., and Lerner, R. A. (1990) MetalloantibodiesScience 249, 659–662.

    Article  PubMed  CAS  Google Scholar 

  38. Getzoff, E. D., Tainer, J. A., and Lerner, R. A. (1988) The chemistry and mechanism of antibody binding to protein antigens.Adv. Immunol. 43, 1.

    Article  PubMed  CAS  Google Scholar 

  39. Roberts, V., Iverson, B., Benkovic, S., Lerner, R. A., Getzoff, E. D., and Tainer, J. A. (1990) Antibody remodelling: A general solution to the design of a metal coordination site in an antibody binding pocket.Proc. Natl. Acad. Sci. USA 87, 6654–6658.

    Article  PubMed  CAS  Google Scholar 

  40. Balint, R. F. and Larrick, J. W. (1993) Antibody engineering by parsimonious mutagenesis.Gene 137(1), 109–118.

    Article  PubMed  CAS  Google Scholar 

  41. Rodwell, J. D. (1989) Engineering monoclonal antibodies.Nature 342, 99–101.

    Article  PubMed  CAS  Google Scholar 

  42. Wetzel, R. (1988) Active immunoglobulin fragments synthesised inE. coli-from Fab to scantibodies.Protein Eng. 2(3), 169–175.

    Article  PubMed  CAS  Google Scholar 

  43. Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment inE. coli. Science 240, 1038–1040.

    Article  PubMed  CAS  Google Scholar 

  44. Pluckthun, A. (1992) Mono and bivalent antibody fragments produced inE. coli: engineering, folding and antigen binding.Immunol. Rev. 130, 151–188.

    Article  PubMed  CAS  Google Scholar 

  45. Skerra, A., Pfitzinger, I., and Pluckthun, A. (1990) The functional expression of antibody Fv fragments inE. coli: improved vectors and a generally applicable purification strategy.Bio/Technology 9, 273–278.

    Article  Google Scholar 

  46. Pluckthun, A. (1991) Antibody engineering: Advances from the use of Escherichia coli expression systems.Bio/Technology 9, 545–551.

    Article  PubMed  CAS  Google Scholar 

  47. Freudl, R. (1989) Insertion of peptides into cell-exposed-areas ofE. coli. OmpA does not interfere with export and membrane assembly.Gene 82, 229–234.

    Article  PubMed  CAS  Google Scholar 

  48. Haseman, C. A. and Capra, J. D. (1990) High level production of a functional immunoglobulin heterodimer in a baculovirus expression system.Proc. Natl. Acad. Sci. USA 87, 3942–3946.

    Article  Google Scholar 

  49. Hiatt, A. C. (1991) Monoclonal antibodies, hybridoma technology and heterologous production systems.Curr. Opin. Immunol. 3, 229–235.

    Article  PubMed  CAS  Google Scholar 

  50. Skerra, A., Dreher, M. L., and Winter, G. (1991) Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two membrane system.Anal. Biochem. 196, 151–156.

    Article  PubMed  CAS  Google Scholar 

  51. Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant Fab fragments produced inE. coli. Bio/Technology 91, 157–161.

    Article  Google Scholar 

  52. Skerra, A. (1993) Bacterial expression of immunoglobulin fragments.Curr. Opin. Immunol. 5(2), 256–262.

    Article  PubMed  CAS  Google Scholar 

  53. Horwitz, A. H., Chang, C. P., Better, M., Hellstrom, K. E., and Robinson, R. (1988) Secretion of functional antibody and Fab fragment from yeast cells.Proc. Natl. Acad. Sci. USA 85, 8678–8682.

    Article  PubMed  CAS  Google Scholar 

  54. Davis, G. T., Bedzyk, W. D., Voss, E. W., and Jacobs, T. W. (1991) Single chain antibody (SCA) encoding genes: one step construction and expression in eukaryotic cells.Bio/Technology 9, 165–169.

    Article  PubMed  CAS  Google Scholar 

  55. Rodrigues, M. L., Snedecor, B., Chen, C., Wong, W.L., Garg, S., Blank, G. S., Maneval, D., and Carter, P. (1993) Engineering Fab fragments for efficient F(ab)2 formation in Escherichia coli and for improvedin vivo stability.J. Immunol. 151(12), 6954–6961.

    PubMed  CAS  Google Scholar 

  56. Bhat, T. N., Bentley, G. A., Fischmann, T. O., Boulot, G., and Poljak, R. J. (1990) Small rearrangements in structures of Fv and Fab fragments of antibody Dl.3 on antigen binding.Nature. 347, 483–485.

    Article  PubMed  CAS  Google Scholar 

  57. Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. (1990) A comparison of strategies to stabilize immunoglobulin Fv fragments.Biochemistry 29, 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  58. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single chain antigen binding proteins.Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  59. Huston, J. S., Levinson, D., Mudgett-Hunter, M., et al. (1988) Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single chain Fv analog produced inE. coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  60. Pack, P. and Pluckthun, A. (1992) Miniantibodies: Use of amphipathic helicies to produce functional, flexibly linked dimeric Fv fragments with high avidity inE. coli. Biochemistry 31(6), 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  61. Kostelny, S. A., Cole, M. S., and Tso, J. Y. (1992) Formation of a bispecific antibody by the use of leucine zippers.J. Immunol. 148(5), 1547–1551.

    PubMed  CAS  Google Scholar 

  62. Fuchs, P., Breitling, F., Dubel, S., Seehaus, T., and Little M. (1991) Targeting recombinant antibodies to the surface ofE. coli: fusion to a peptidoglycan associated lipoprotein.Bio/Technology 9, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  63. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P.T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted fromE. coli. Nature 341, 544–546.

    Article  PubMed  CAS  Google Scholar 

  64. Huse, W. D., Sastry, L., Iverson, S., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J., and Lerner, R. A. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda.Science 246, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  65. Xu, B. Z., Chang, C. H., and Schiffer, M. (1990) Testing the procedure of simulated annealing by refining homologous immunoglobulin light chain dimers.Protein Eng. 3(7), 583–586.

    Article  PubMed  CAS  Google Scholar 

  66. Williams, W. V., Moss, D. A., Kieber-Emmons, T., and Cohen, J. A. (1989) Development of biologically active peptides based on antibody structure.Proc. Natl. Acad. Sci. USA 86, 5537–5541.

    Article  PubMed  CAS  Google Scholar 

  67. Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction.Proc. Natl. Acad. Sci. USA 86, 3833–3837.

    Article  PubMed  CAS  Google Scholar 

  68. Marks, J. D., Tristem, M., Karpas, A., and Winter, G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family specific oligonucleotide probes.Eur. J. Immunol. 21, 985–991.

    Article  PubMed  CAS  Google Scholar 

  69. Larrick, J. W., Danielsson, L., Brenner, C. A., Wallace, E. F., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. K. (1989) Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells.Bio/Technology 7, 934–939.

    Article  CAS  Google Scholar 

  70. Mullinax, R. L., Gross, E. A., Amberg, J. R., Hay, B.N., Hogrefe, H. H., et al. (1990) Identification of human antibody fragment clones specific for tetanus toxoid in bacteriophage λ immunoexpression library.Proc. Natl. Acad. Sci. USA. 87, 8095–8099.

    Article  PubMed  CAS  Google Scholar 

  71. Persson, M. A. A., Caothien, R. H., and Burton, D. R. (1991) Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning.Proc. Natl. Acad. Sci. USA 88, 2432–2436.

    Article  PubMed  CAS  Google Scholar 

  72. Griffiths, A. (1993) Production of human antibodies using bacteriophage.Curr. Opin. Immunol. 5(2), 263–267.

    Article  PubMed  CAS  Google Scholar 

  73. Geisow, M. J. (1992) Improved selection systems for man-made antibodies.Trends Biotech. 10, 75–77.

    Article  CAS  Google Scholar 

  74. Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes.Gene 73, 305–318.

    Article  PubMed  CAS  Google Scholar 

  75. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies; filamentous phage displaying antibody variable domains.Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  76. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter G. (1991) Making antibody fragments using phage libraries.Nature 352, 642–644.

    Article  Google Scholar 

  77. Garrard, L. J., Yang, M., O’Connell, M. P., Kelley, R. F., and Henner, D. J. (1991) Fab assembly and enrichment in a monovalent phage display system.Bio/Technology 9, 1373–1377.

    Article  PubMed  CAS  Google Scholar 

  78. Owens, R. J. and Young, R. J. (1994) The genetic engineering of monoclonal antibodies.J. Immunol. Methods 168(2), 149–165.

    Article  PubMed  CAS  Google Scholar 

  79. Crameri, R. and Suter, M. (1993) Display of biologically active proteins on the surface of filamentous phages: cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production.Gene 137(1), 69–75.

    Article  PubMed  CAS  Google Scholar 

  80. Hogrefe, H. H., Amberg, J. R., Hay, B. N., Sorge, J.A., and Shopes, B. (1993) Cloning in a bacteriophage lambda vector for the display of binding proteins on filamentous phage.Gene 137(1), 85–91.

    Article  PubMed  CAS  Google Scholar 

  81. Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S.J., and Lerner, R. A. (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces.Proc. Natl. Acad. Sci. USA 88, 4363–4366.

    Article  PubMed  CAS  Google Scholar 

  82. Barbas, C. F., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991). Assembly of combinatorial librearies on phage surfaces (Phabs): The gene HI site.Proc. Natl. Acad. Sci. USA. 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  83. Shokat, K. M. and Schultz, P. G. (1990) Catalytic antibodies.Ann. Rev. Immunol. 8, 335–345.

    Article  CAS  Google Scholar 

  84. Lerner, R. A. and Benkovic, S. A. (1988) Principles of antibody catalysis.Bioessays 9, 107–112.

    Article  PubMed  CAS  Google Scholar 

  85. Tawfik, D. S., Eshhar, Z., and Green, B. S. (1994) Catalytic antibodies: A critical assessment.Mol. Biotechnol.,1(1), 87–103.

    PubMed  CAS  Google Scholar 

  86. Leatherbarrow, R. J. (1990) Catalytic antibodies: On to the second generation.Nature 348, 482–483.

    Article  PubMed  CAS  Google Scholar 

  87. Hilvert, D.(1991) Extending the chemistry of enzymes and abzymes.Trends Biotech. 9, 11–15.

    Article  CAS  Google Scholar 

  88. Mayforth, R. D. and Quintans, J. (1990) Designer and catalytic antibodies.N. Engl. J. Med. 323(3), 173–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapley, R. The biotechnology and applications of antibody engineering. Mol Biotechnol 3, 139–154 (1995). https://doi.org/10.1007/BF02789110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789110

Index entries