Skip to main content

Advertisement

Log in

Human Gut Microbiome Response to Short-Term Bifidobacterium-Based Probiotic Treatment

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gut microbiota is believed to play a crucial role in modulating obesity in humans, and probiotics affecting gut microbiota can alleviate some of the obesity-related health complications. The study was aimed to investigate changes in the composition of the gut microbiome in obese humans due to short-term (2 weeks) treatment of obese patients with a probiotic preparation containing Bifidobacterium longum. Faecal microbiome diversity was studied using the 16S amplicon sequencing by Illumina MiSeq. Bioinformatic analysis showed distribution across 14 phyla (with Firmicutes and Bacteroidetes dominating), 21 class, 125 genera and 973 OTUs. The probiotic treatment decreased relative abundance of Bacteroidetes (Prevotellaceae and Bacteroidaceae), while increasing that of Actinobacteria (Bifidobacteriaceae and Coriobacteriaceae), and Firmicutes (Negativicutes: Veillonellaceae and Clostridia: Peptostreptococcaceae). The probiotic treatment decreased total blood sugar and increased patients’ assessment of their physical and mental health. Thus even the short-term Bifidobacterium-based probiotic treatment brought significant compositional changes in the 16S rRNA gene diversity in faecal bacterial assemblages by increasing beneficial and decreasing pathogenic or opportunistic bacteria; the related shifts in life quality assessment necessitate further research into the causal relationships involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

The read data were deposited in GenBank under the sequence read archive (SRA) accession No. SRP194142.

References

  1. Tsai YL, Lin TL, Chang CJ et al (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26:3. https://doi.org/10.1186/s12929-018-0493-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Borovik TE, Ladodo KS, Semenova NN et al (2016) Skvashenniye molochnye produckty v pitanyi detey v Rossiskoy Federatsii: proshloye I nastoyashee [Fermented dairy products in the nutrition of infants in the Russian Federation: past and present]. Curr Pediatr 15:556–561. https://doi.org/10.15690/vsp.v15i6.1651(in Russian)

    Article  Google Scholar 

  3. Uhr GT, Dohnalová L, Thaiss CA (2019) The dimension of time in host-microbiome interactions. mSystems 4:e00216–e00218. https://doi.org/10.1128/mSystems.00216-18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tupikin AE, Kalmykova AI, Kabilov MR (2016) Draft genome sequence of the probiotic Bifidobacterium longum subsp. longum strain MC-42. Genome Announc 4:e01411–e01416. https://doi.org/10.1128/genomeA.01411-16

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ware JE, Kosinski M, Keller SD (1994) SF-36 physical and mental health summary scales: a user’s manual. The Health Institute, New England Medical Center, Boston

    Google Scholar 

  6. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  7. Edgar RC (2016) SINTAX, a simple non-bayesian taxonomy classifier for 16S and ITS sequences. https://doi.org/10.1101/074161

  8. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  9. Janssens Y, Nielandt J, Bronselaer A et al (2018) Disbiome database: linking the microbiome to disease. BMC Microbiol 18:50. https://doi.org/10.1186/s12866-018-1197-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234. https://doi.org/10.1080/19490976.2016.1158395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vermeire S, Joossens M, Verbeke K et al (2015) Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J Crohn’s Colitis 10:387–394. https://doi.org/10.1093/ecco-jcc/jjv203

    Article  Google Scholar 

  12. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  13. Naseribafrouei A, Hestad K, Avershina E et al (2014) Correlation between the human faecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162. https://doi.org/10.1111/nmo.12378

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Song J, Zhai Y et al (2015) Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia. Int J Syst Evol Microbiol 65:1193–1198. https://doi.org/10.1099/ijs.0.000079

    Article  CAS  PubMed  Google Scholar 

  15. Petrov VA, Alifirova VM, Saltykova IV et al (2016) Sravnitelnoye isucheniye kushechnoi microbioty pri bolezni Parkinsona I drugikh nevrologicheskich zabolevaniyah [Comparison study of gut microbiota in case of Parkinson’s disease and other neurological disorders]. Bull Sib Med 15:113–125. https://doi.org/10.20538/1682-0363-2016-5-113-125(in Russian)

    Article  Google Scholar 

  16. Tito RY, Cypers H, Joossens M et al (2017) Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol 69:114–121. https://doi.org/10.1002/art.39802

    Article  CAS  PubMed  Google Scholar 

  17. Ohara T (2019) Identification of the microbial diversity after fecal microbiota transplantation therapy for chronic intractable constipation using 16 s rRNA amplicon sequencing. PLoS ONE 14:e0214085. https://doi.org/10.1371/journal.pone.0214085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strati F, Cavalieri D, Albanese D et al (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5:24. https://doi.org/10.1186/s40168-017-0242-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park S-H, Kim K-A, Ahn Y-T et al (2015) Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol 15:49. https://doi.org/10.1186/s12866-015-0386-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lopetuso LR, Petito V, Graziani C et al (2018) Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders. Dig Disord 36:56–65. https://doi.org/10.1159/000477205

    Article  Google Scholar 

  21. Iino C, Shimoyama T, Iino K et al (2019) Daidzein intake is associated with equol producing status through an increase in the intestinal bacteria responsible for equol production. Nutrients 11:pii: E433. https://doi.org/10.3390/nu11020433

    Article  CAS  Google Scholar 

  22. Dillon SM, Lee EJ, Kotter CV et al (2015) Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 9:24–37. https://doi.org/10.1038/mi.2015.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costea PI, Hildebrand F, Arumugam M et al (2017) Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 3:8–16. https://doi.org/10.1038/s41564-017-0072-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leite GSF, Resende AS, West NP et al (2018) Probiotics and sports: a new magic bullet? Nutrition 60:152–160. https://doi.org/10.1016/j.nut.2018.09.023

    Article  PubMed  Google Scholar 

  25. Coqueiro AY, de Oliveira Garcia AB, Rogero MM et al (2017) Probiotic supplementation in sports and physical exercise: does it present any ergogenic effect? Nutr Health 23:239–249. https://doi.org/10.1177/0260106017721000

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Russian Ministry of Science and Higher Education, the projects (2018−2020) Nos. 0309-2018-0004 and AAAA-A17-117020210021-7.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.S. and A.K.; methodology, T.A.; software, M.K.; validation, N.N.; formal analysis, M.K.; investigation, T.A. and G.S.; resources, V.V.; data curation, A.T. and N.N.; writingoriginal draft preparation, N.N.; writing−review and editing, V.V.; supervision, V.V.; project administration, M.K.; and funding acquisition, A.K. and V.V.

Corresponding author

Correspondence to Natalia Naumova.

Ethics declarations

Conflict of interest

Author A.K. is an employee of Bio-Vesta LLC. Any opinions or scientific interpretations expressed in this manuscript are those of the author and do not necessarily reflect the position or policy of Bio-Vesta LLC. Otherwise the authors declare that they have no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Consent to participate

All patients were duly informed and gave their consent to the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, N., Alikina, T., Tupikin, A. et al. Human Gut Microbiome Response to Short-Term Bifidobacterium-Based Probiotic Treatment. Indian J Microbiol 60, 451–457 (2020). https://doi.org/10.1007/s12088-020-00888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00888-1

Keywords

Navigation