Many and deep cyclical changes in measures of retinal functioning during the 24-h daily cycle are to a significant extent determined by the actions of two neuromodulators – melatonin and dopamine. Dopamine and melatonin form a reciprocal pair mutually inhibiting each other’s synthesis, and are released into the intercellular space of the retina essentially in contraphase. Dopamine is synthesized cyclically in a special population of dopaminergic amacrine cells and its content in the retina increases in the daytime and decreases at night. Like melatonin, dopamine acts on all the main cell types in the outer and inner layers of the retina. Excitation of D1- and D2-like receptors by dopamine regulates protein kinase A activity and the intracellular cAMP concentration, and can also trigger other regulatory pathways, including activation of phospholipase C. In photoreceptors, dopamine acting via D2-like dopamine receptors decreases the cAMP concentration, suppresses melatonin synthesis, and regulates the conductivity of gap junctions between rods and cones depending on the phase of the light cycle. Decreasing the cAMP concentration, dopamine may regulate the phototransduction cascade and other cellular functions in photoreceptors. One of the aims of this review is to address these possibilities.
Similar content being viewed by others
References
L. A. Astakhova, S. V. Kapitskii, V. I. Govardovskii, and M. L. Firsov, “Cyclic AMP as a regulator of the phototransduction cascade,” Ros. Fiziol. Zh., 98, No. 11, 1273–1285 (2012).
A. Akopian and P. Witovsky, “D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors,” J. Neurophysiol., 76, No. 3, 1828–1835 (1996).
F. Amenta, A. Ricci, S. K. Tayebati, and D. Zaccheo, “The peripheral dopaminergic system: morphological analysis, functional and clinical applications,” Ital. J. Anat. Embryol., 107, No. 3, 145–167 (2002).
L. A. Astakhova, E. V. Samoiliuk, V. I. Govardovskii, and M. L. Firsov, “cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade,” J. Gen. Physiol., 140, No. 4, 421–433 (2012).
J. M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacol. Rev., 63, No. 1, 182–187 (2011).
J. C. Besharse, D. A. Dunis, and P. M. Iuvone, “Regulation and possible role of serotonin N-acetyltransferase in the retina,” Fed. Proc., 43, No. 12, 2704–2708 (1984).
J. C. Besharse, M. Zhuang, K. Freeman, and J. Fogerty, “Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock,” Eur. J. Neurosci., 20, No. 1, 167–174 (2004).
B. Biedermann, E. Frohlich, J. Grosche, et al., “Mammalian Muller (glial) cells express functional D2 dopamine receptors,” Neuroreport, 6, No. 4, 609–612 (1995).
B. Bjelke, M. Goldstein, B. Tinner, et al., “Dopaminergic transmission in the rat retina: evidence for volume transmission,” J. Chem. Neuroanat., 12, No. 1, 37–50 (1996).
S. A. Blooffi eld and B. Volgyi, “The diverse functional roles and regulation of neuronal gap junctions in the retina,” Nat. Rev. Neurosci., 10, No. 7, 496–506 (2009).
R. Brandstatter, “Encoding time of day and time of year by the avian circadian system,” J. Neuroendocrinol., 15, No. 4, 398–404 (2003).
J. H. Brown and M. H. Makman, “Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina,” Proc. Natl. Acad. Sci. USA, 69, No. 3, 539–543 (1972).
B. Burnside, M. Evans, R. T. Fletcher, and G. J. Chader, “Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3’,5’-monophosphate,” J. Gen. Physiol., 79, No. 5, 759–774 (1982).
G. M. Cahill and J. C. Besharse, “Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina,” Vis. Neurosci., 8, No. 5, 487–490 (1992).
G. M. Cahill, M. S. Grace, and J. C. Besharse, “Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock,” Cell Mol. Neurobiol., 11, No. 5, 529–560 (1991).
L. S. Chun, R. B. Free, T. B. Doyle, et al., “Dl-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms,” Mol. Pharmacol., 84, No. 2, 190–200 (2013).
A. I. Cohen, R. D. Todd, S. Harmon, and K. L. O’Malley, “Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase,” Proc. Natl. Acad. Sci. USA, 89, No. 24, 12,093–12,097 (1992).
D. M. Dacey, “The dopaminergic amacrine cell,” J. Comp. Neurol., 301, No. 3, 461–489 (1990).
A. Dearry and B. Burnside, “Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin,” J. Neurochem., 46, No. 4, 1022–1031 (1986).
A. Dearry, J. L. Edelman, S. Miller, and B. Burnside, “Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors,” J. Neurochem., 54, No. 4, 1367–1378 (1990).
A. Dearry, P. Falardeau, C. Shores, and M. G. Caron, “D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA,” Cell Mol. Neurobiol., 11, No. 5, 437–453 (1991).
A. Derouiche and E. Asan, “The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies,” Eur. J. Neurosci., 11, No. 4, 1391–1402 (1999).
M. T. Do and K. W. Yau, “Intrinsically photosensitive retinal ganglion cells,” Physiol. Rev., 90, No. 4, 1547–1581 (2010).
R. H Douglas, H. J. Wagner, M. Zaunreiter, et al., “The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina,” Vis. Neurosci., 9, No. 3–4, 335–343 (1992).
J. E. Dowling and R. Ehinger, “Synaptic organization of the aminecontaining interplexiform cells of the goldfi sh and Cebus monkey retinas,” Science, 188, No. 4185, 270–273 (1975).
A. Egerton, M. A. Mehta, A. J. Montgomery, et al., “The dopaminergic basis of human behaviors: A review of molecular imaging studies,” Neurosci. Biobehav. Rev, 33, No. 7, 1109–1132 (2009).
E. V. Famiglietti, Jr. and H. Kolb, “Structural basis for ON and OFFcenter responses in retinal ganglion cells,” Science, 194, No. 4261, 193–195 (1976).
A. Feigenspan, S. Gustincich, B. P. Bean, and E. Raviola, “Spontaneous activity of solitary dopaminergic cells of the retina,” J. Neurosci., 18, No. 17, 6776–6789 (1998).
C. A. Gilson, N. Ackland, and B. Burnside, “Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium,” J. Cell Biol., 102, No. 3, 1047–1059 (1986).
J. A. Gingrich and M. G. Caron, “Recent advances in the molecular biology of dopamine receptors,” Annu. Rev. Neurosci., 16, 299–321 (1993).
D. A. Golombek and R. E. Rosenstein, “Physiology of circadian entrainment,” Physiol. Rev., 90, No. 3, 1063–1102 (2010).
A. Hasbi, B. F. O’Dowd, and S. R. George, “Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms,” Curr. Opin. Pharmacol., 10, No. 1, 93–99 (2010).
A. Hasbi, B. F. O’Dowd, and S. R. George, “Dopamine Dl-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance,” Mol. Brain, 4, 26–31 (2011).
M. Hasegawa and G. M. Cahill, “Cyclic AMP resets the circadian clock in cultured Xenopus retinal photoreceptor layers,” J. Neurochem., 70, No. 4, 1523–1531 (1998).
M. Hasegawa and G. M. Cahill, “A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light,” J. Neurochem., 72, No. 5, 1812–1820 (1999).
H. Hirasawa, R. A. Betensky, and E. Raviola, “Corelease of dopamine and GABA by a retinal dopaminergic neuron,” J. Neurosci., 32, No. 38, 13,281–13,291 (2012).
P. M. Iuvone and J. C. Besharse, “Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs,” Brain Res., 273, No. 1, 111–119 (1983).
T. N. Ivanova, A. L. Alonso-Gomez, and P. M. Iuvone, “Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor- mediated inhibition of cAMP formation,” Brain Res., 1207, 111–119 (2008).
T. N. Ivanova and P. M. Iuvone, “Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells,” Brain Res., 991, No. 1–2, 96–103 (2003).
C. R. Jackson, S. S. Chaurasia, H. Zhou, et al., “Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells,” J. Neurochem., 109, No. 1, 148–157 (2009).
F. Kawai, M. Horiguchi, and E. Miyachi, “Dopamine modulates the voltage response of human rod photoreceptors by inhibiting the h current,” Invest. Ophthalmol. Vis. Sci., 52, No. 7, 4113–4117 (2011).
J. W. Kebabian and D. B. Calne, “Multiple receptors for dopamine,” Nature, 277, No. 5692, 93–96 (1979).
P. W. Keeley and B. E. Reese, “Morphology of dopaminergic amacrine cells in the mouse retina: independence from homotypic interactions,” J. Comp. Neurol., 518, No. 8, 1220–1231 (2010).
A. E. Kiselevsky, S. J. Mulligan, C. Altier, et al., “D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry,” Neuron, 58, No. 4, 557–570 (2008).
A. E. Kiselevsky and G. W. Zamponi, “D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels,” Channels (Austin), 2, No. 4, 269–277 (2008).
H. Kolb, N. Cuenca, H. H. Wang, and L. Dekorver, “The synaptic organization of the dopaminergic amacrine cell in the cat retina,” J. Neurocytol., 19, No. 3, 343–366 (1990).
W. Kolbinger, D. Wagner, and H. J. Wagner, “Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals,” Cell Tissue Res., 285, No. 3, 445–451 (1996).
D. Krizaj, “Mesopic state: cellular mechanisms involved in pre- and post-synaptic mixing of rod and cone signals,” Microsc. Res. Tech., 50, No. 5, 347–359 (2000).
D. Krizaj, R. Gabriel, W. G. Owen, and P. Witkovksy, “Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina,” J. Comp. Neurol., 398, No. 4, 529–538 (1998).
R. C. Kubrusly, M. C. Da Cunha, R. A. Reis, et al., “Expression of fun ctional receptors and transmitter enzymes in cultured Muller cells,” Brain Res., 1038, No. 2, 141–149 (2005).
R. C. Kubrusly, M. Z. Guimaraes, A. P. Vieira, et al., “L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development,” J. Neurochem., 86, No. 1, 45–54 (2003).
F. J. Lee, S. Xue, L. Pei, et al., “Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor,” Cell, 111, No. 2, 219–230 (2002).
S. P. Lee, C. H. So, A. J. Rashid, et al., “Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal,” J. Biol. Chem., 279, No. 34, 35,671–35,678 (2004).
H. Li, A. Z. Chuang, and J. O’Brien, “Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina,” J. Neurosci., 29, No. 48, 15,178–15,186 (2009).
H. Li, Z. Zhang, M. R. Blackburn, et al., “Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina,” J. Neurosci., 33, No. 7, 3135–3150 (2013).
F. Liu, Q. Wan, Z. B. Pristupa, et al., “Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors,” Nature, 403, No. 6767, 274–280 (2000).
D. G. McMahon, P. M. Iuvone, and G. Tosini, “Circadian organization of the mammalian retina: From gene regulation to physiology and diseases,” Progr. Retin. Eye Res., 39, 58–76 (2014).
C. Missale, S. R. Nash, S. W. Robinson, et al., “Dopamine receptors: from structure to function,” Physiol. Rev., 78, No. 1, 189–225 (1998).
C. Mora-Ferrer, S. Yazulla, K. M. Studholme, and M. Haak-Frendscho, “Dopamine D1-receptor immunolocalization in goldfish retina,” J. Comp. Neurol., 411, No. 4, 705–714 (1999).
Z. Muresan and J. Besharse, “D2-like dopamine receptors in amphibian retina: localization with fl uorescent ligands,” J. Comp. Neurol., 13, No. 2, 149–160 (1993).
J. Nguyen-Legros, A. Simon, I. Caille, and B. Bloch, “Immunocytochemical localization of dopamine D1 receptors in the retina of mammals,” Vis. Neurosci., 14, No. 3, 545–551 (1997).
J. Nguyen-Legros, C. Versauz-Botteri, and P. Vernier, “Dopamine receptor localization in the mammalian retina,” Mol. Neurobiol., 19, No. 3, 181–204 (1999).
A. Nieoullon, “Dopamine and the regulation of cognition and attention,” Progr. Neurobiol., 67, No. 1, 53–83 (2002).
A. Nieoullon and A. Coquerel, “Dopamine: a key regulator to adapt action, emotion, motivation and cognition,” Curr. Opin. Neurol., 16, Supplement 2, S3–S9 (2003).
I Nir, J. M. Harrison, R. Haque, et al., “Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors,” J. Neurosci., 22, No. 6, 2063–2073 (2002).
J. Z. Nowak, M. Przybysz, and E. Zurawska, “The melatonin generating system in the rat retina and pineal gland: effect of single and repeated electroconvulsive shock (ECS),” Pol. J. Pharmacol. Pharm., 40, No. 6, 573–584 (1988).
J. Z. Nowak, Z. Urawska, and J. Zawilska, “Melatonin and its generating system in vertebrate retina: circadian rhythm, effect of environmental lighting and interaction with dopamine,” Neurochem. Int., 14, No. 4, 397–406 (1989).
M. J. Paglia, H. Mou, and R. H. Cote, “Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory gamma subunit re-evaluated,” J. Biol. Chem., 277, No. 7, 5017–5023 (2002).
S. F. Pang, H. S. Yu, H. C. Suen, and G. M. Brown, “M Melatonin in the retina of rats: a diurnal rhythm,” J. Endocrinol., 87, No. 1, 89–93 (1980).
S Patel, K. L. Chapman, D. Marston, et al., “Pharmacological and functional characterisation of dopamine D4 receptors in the rat retina,” Neuropharmacology, 44, No. 8, 1038–1046 (2003).
M. L. Perrault, A. Hasbi, M. Alijaniaram, et al., “The dopamine DID2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia,” J. Biol. Chem., 285, No. 47, 36,625–36,634 (2010).
M. E. Pierce and J. C. Besharse, “Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length,” J. Gen. Physiol., 86, No. 5, 671–689 (1985).
E. Popova, “Role of dopamine in distal retina,” J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol., 200, No. 5, 333–358 (2014).
E. Popova and P. Kupenova, “Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes,” Vision Res., 88, 22–29 (2013).
K. Porrello and B. Burnside, “Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate,” J. Cell Biol., 98, No. 6, 2230–2238 (1984).
M. Puopolo, S. E. Hochstetler, S. Gustincich, et al., “Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation,” Neuron, 30, No. 1, 211–255 (2001).
Z. X. Queen, R. Fertel, N. H. Neff, and M. Hadjiconstantinou, “Pharmacological characterization of rat retinal dopamine receptors,” J. Pharmacol. Exp. Ther., 248, No. 2, 621–625 (1989).
C. Ribelayga, Y. Cao, and S. C. Mangel, “The circadian clock in the retina controls rod-cone coupling,” Neuron, 59, No. 5, 790–801 (2008).
C. Ribelayga and S. C. Mangel, “Identification of a circadian clock-controlled neural pathway in the rabbit retina,” PLoS One, 5, No. 6, e11020 (2010).
B. Rohrer and W. K. Stell, “Localization of putative dopamine D2-like receptors in the chick retina, using in situ hybridization and immunocytochemistry,” Brain Res., 695, No. 2, 110–116 (1995).
A. Sahu, K. R. Tyeryar, H. O. Vongtau, et al., “D5 dopamine receptors are required for dopaminergic activation of phospholipase C,” Mol. Pharmacol., 75, No. 3, 447–453 (2009).
C. Savy, F. Moussafi , J. Durand, et al., “Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey,” J. Comp. Neurol., 355, No. 3, 392–404 (1995).
T. Schneider and E. Zrenner, “Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat,” Exp. Eye Res., 52, No. 4, 425–430 (1991).
C. H. So, V. Verma, M. Alijuaniaram, et al., “Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine Dl-D2 receptor hetero- oligomers,” Mol. Pharmacol., 75, No. 4, 843–854 (2009).
S. L. Stella, Jr. and W. B. Thoreson, “Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP,” Eur. J. Neurosci., 12, No. 10, 3537–3548 (2000).
G. Tosini, C. Bertolucci, and A. Foa, “The circadian system of reptiles: a multioscillatory and multiphotoreceptive system,” Physiol. Behav., 72, No. 4, 461–471 (2001).
G. Tosini, S. S. S. Chaurasia, and I. P. Michael, “Regulation of arylalkylamine N-acetyltransferase (AANAT) in the retina,” Chronobiol. Int., 23, No. 1–2, 381–391 (2006).
G. Tosini and C. Fukuhara, “Photic and circadian regulation of retinal melatonin in mammals,” J. Neuroendocrinol., 15, No. 4, 364– 369 (2003).
G. Tosini, N. Pozdeyev, K. Sakamoto, and P. M. Iuvone, “The circadian clock system in the mammalian retina,” Bioessays, 30, No. 7, 624–633 (2008).
V. T. Tran and M. Dickman, “Differential localization of dopamine D1 and D2 receptors in rat retina,” Invest. Ophthalmol. Vis. Sci., 33, No. 5, 1620–1626 (1992).
S. H. Tsang, M. L. Woodruff, K. M. Janisch, et al., “Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response,” J. Physiol., 579, No. 2, 303–312 (2007).
D. Vallone, R. Picetti, and E. Borrelli, “Structure and function of dopamine receptors,” Neurosci. Biobehav. Rev., 24, No. 1, 125–132 (2000).
C. Versaux-Botteri, J. B. Gibert, J. Nguyen-Legros, and P. Vernier, “Molecular identifi cation of a dopamine D1b receptor in bovine retinal pigment epithelium,” Neurosci. Lett., 237, No. 1, 9–12 (1997).
M. L. Veruki, “Dopaminergic neurons in the rat retina express dopamine D2/3 receptors,” Eur. J. Neurosci., 9, No. 5, 1096–1100 (1997).
M. L. Veruki and H. Wassle, “Immunohistochemical localization of dopamine D1 receptors in rat retina,” Eur. J. Neurosci., 8, No. 11, 2286–2297 (1996).
T. Vuvani, M. Geffard, P. Denis, et al., “Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptors on rods in the rat retina,” Brain Res., 614, No. 1–2, 57–64 (1993).
H. J. Wagner, B. G. Luo, M. A. Ariano, et al., “Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies,” J. Comp. Neurol., 331, No. 4, 469–481 (1993).
A. F. Wiechmann, D. Bok, and J. Horwitz, “Melatonin-binding in the frog retina: autoradiographic and biochemical analysis,” Invest. Ophthalmol. Vis. Sci., 27, No. 2, 153–163 (1986).
A. F. Wiechmann and D. M. Sherry, “Role of melatonin and its receptors in the vertebrate retina,” Int. Rev. Cell Mol. Biol., 300, 211–242 (2013).
P. Witkovsky, “Dopamine and retinal function,” Doc. Ophthalmol., 108, No. 1, 17–40 (2004).
P. Witkovsky, J. Zhang, and O. Blam, “Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells,” Cell Tissue Res., 278, No. 1, 45–56 (1994).
E. Zurawska and J. Z. Nowak, “Serotonin N-acetyltransferase (NAT) induction in mammalian retina: role of cyclic AMP and calcium ions,” Folia Histochem. Cytobiol., 30, No. 1, 5–11 (1992).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 7, pp. 777–790, July, 2014.
Rights and permissions
About this article
Cite this article
Firsov, M.L., Astakhova, L.A. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. Neurosci Behav Physi 46, 138–145 (2016). https://doi.org/10.1007/s11055-015-0210-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11055-015-0210-9