Skip to main content

Advertisement

Log in

The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Many and deep cyclical changes in measures of retinal functioning during the 24-h daily cycle are to a significant extent determined by the actions of two neuromodulators – melatonin and dopamine. Dopamine and melatonin form a reciprocal pair mutually inhibiting each other’s synthesis, and are released into the intercellular space of the retina essentially in contraphase. Dopamine is synthesized cyclically in a special population of dopaminergic amacrine cells and its content in the retina increases in the daytime and decreases at night. Like melatonin, dopamine acts on all the main cell types in the outer and inner layers of the retina. Excitation of D1- and D2-like receptors by dopamine regulates protein kinase A activity and the intracellular cAMP concentration, and can also trigger other regulatory pathways, including activation of phospholipase C. In photoreceptors, dopamine acting via D2-like dopamine receptors decreases the cAMP concentration, suppresses melatonin synthesis, and regulates the conductivity of gap junctions between rods and cones depending on the phase of the light cycle. Decreasing the cAMP concentration, dopamine may regulate the phototransduction cascade and other cellular functions in photoreceptors. One of the aims of this review is to address these possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Astakhova, S. V. Kapitskii, V. I. Govardovskii, and M. L. Firsov, “Cyclic AMP as a regulator of the phototransduction cascade,” Ros. Fiziol. Zh., 98, No. 11, 1273–1285 (2012).

    CAS  Google Scholar 

  2. A. Akopian and P. Witovsky, “D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors,” J. Neurophysiol., 76, No. 3, 1828–1835 (1996).

    PubMed  CAS  Google Scholar 

  3. F. Amenta, A. Ricci, S. K. Tayebati, and D. Zaccheo, “The peripheral dopaminergic system: morphological analysis, functional and clinical applications,” Ital. J. Anat. Embryol., 107, No. 3, 145–167 (2002).

    PubMed  CAS  Google Scholar 

  4. L. A. Astakhova, E. V. Samoiliuk, V. I. Govardovskii, and M. L. Firsov, “cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade,” J. Gen. Physiol., 140, No. 4, 421–433 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. J. M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacol. Rev., 63, No. 1, 182–187 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. J. C. Besharse, D. A. Dunis, and P. M. Iuvone, “Regulation and possible role of serotonin N-acetyltransferase in the retina,” Fed. Proc., 43, No. 12, 2704–2708 (1984).

    PubMed  CAS  Google Scholar 

  7. J. C. Besharse, M. Zhuang, K. Freeman, and J. Fogerty, “Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock,” Eur. J. Neurosci., 20, No. 1, 167–174 (2004).

    Article  PubMed  Google Scholar 

  8. B. Biedermann, E. Frohlich, J. Grosche, et al., “Mammalian Muller (glial) cells express functional D2 dopamine receptors,” Neuroreport, 6, No. 4, 609–612 (1995).

  9. B. Bjelke, M. Goldstein, B. Tinner, et al., “Dopaminergic transmission in the rat retina: evidence for volume transmission,” J. Chem. Neuroanat., 12, No. 1, 37–50 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. S. A. Blooffi eld and B. Volgyi, “The diverse functional roles and regulation of neuronal gap junctions in the retina,” Nat. Rev. Neurosci., 10, No. 7, 496–506 (2009).

  11. R. Brandstatter, “Encoding time of day and time of year by the avian circadian system,” J. Neuroendocrinol., 15, No. 4, 398–404 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. J. H. Brown and M. H. Makman, “Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina,” Proc. Natl. Acad. Sci. USA, 69, No. 3, 539–543 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. B. Burnside, M. Evans, R. T. Fletcher, and G. J. Chader, “Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3’,5’-monophosphate,” J. Gen. Physiol., 79, No. 5, 759–774 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. G. M. Cahill and J. C. Besharse, “Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina,” Vis. Neurosci., 8, No. 5, 487–490 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. G. M. Cahill, M. S. Grace, and J. C. Besharse, “Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock,” Cell Mol. Neurobiol., 11, No. 5, 529–560 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. L. S. Chun, R. B. Free, T. B. Doyle, et al., “Dl-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms,” Mol. Pharmacol., 84, No. 2, 190–200 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. A. I. Cohen, R. D. Todd, S. Harmon, and K. L. O’Malley, “Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase,” Proc. Natl. Acad. Sci. USA, 89, No. 24, 12,093–12,097 (1992).

    Article  CAS  Google Scholar 

  18. D. M. Dacey, “The dopaminergic amacrine cell,” J. Comp. Neurol., 301, No. 3, 461–489 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. A. Dearry and B. Burnside, “Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin,” J. Neurochem., 46, No. 4, 1022–1031 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. A. Dearry, J. L. Edelman, S. Miller, and B. Burnside, “Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors,” J. Neurochem., 54, No. 4, 1367–1378 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. A. Dearry, P. Falardeau, C. Shores, and M. G. Caron, “D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA,” Cell Mol. Neurobiol., 11, No. 5, 437–453 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. A. Derouiche and E. Asan, “The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies,” Eur. J. Neurosci., 11, No. 4, 1391–1402 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. M. T. Do and K. W. Yau, “Intrinsically photosensitive retinal ganglion cells,” Physiol. Rev., 90, No. 4, 1547–1581 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. R. H Douglas, H. J. Wagner, M. Zaunreiter, et al., “The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina,” Vis. Neurosci., 9, No. 3–4, 335–343 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. J. E. Dowling and R. Ehinger, “Synaptic organization of the aminecontaining interplexiform cells of the goldfi sh and Cebus monkey retinas,” Science, 188, No. 4185, 270–273 (1975).

  26. A. Egerton, M. A. Mehta, A. J. Montgomery, et al., “The dopaminergic basis of human behaviors: A review of molecular imaging studies,” Neurosci. Biobehav. Rev, 33, No. 7, 1109–1132 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. E. V. Famiglietti, Jr. and H. Kolb, “Structural basis for ON and OFFcenter responses in retinal ganglion cells,” Science, 194, No. 4261, 193–195 (1976).

  28. A. Feigenspan, S. Gustincich, B. P. Bean, and E. Raviola, “Spontaneous activity of solitary dopaminergic cells of the retina,” J. Neurosci., 18, No. 17, 6776–6789 (1998).

    PubMed  CAS  Google Scholar 

  29. C. A. Gilson, N. Ackland, and B. Burnside, “Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium,” J. Cell Biol., 102, No. 3, 1047–1059 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. J. A. Gingrich and M. G. Caron, “Recent advances in the molecular biology of dopamine receptors,” Annu. Rev. Neurosci., 16, 299–321 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. D. A. Golombek and R. E. Rosenstein, “Physiology of circadian entrainment,” Physiol. Rev., 90, No. 3, 1063–1102 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. A. Hasbi, B. F. O’Dowd, and S. R. George, “Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms,” Curr. Opin. Pharmacol., 10, No. 1, 93–99 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. A. Hasbi, B. F. O’Dowd, and S. R. George, “Dopamine Dl-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance,” Mol. Brain, 4, 26–31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Hasegawa and G. M. Cahill, “Cyclic AMP resets the circadian clock in cultured Xenopus retinal photoreceptor layers,” J. Neurochem., 70, No. 4, 1523–1531 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. M. Hasegawa and G. M. Cahill, “A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light,” J. Neurochem., 72, No. 5, 1812–1820 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. H. Hirasawa, R. A. Betensky, and E. Raviola, “Corelease of dopamine and GABA by a retinal dopaminergic neuron,” J. Neurosci., 32, No. 38, 13,281–13,291 (2012).

    Article  CAS  Google Scholar 

  37. P. M. Iuvone and J. C. Besharse, “Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs,” Brain Res., 273, No. 1, 111–119 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. T. N. Ivanova, A. L. Alonso-Gomez, and P. M. Iuvone, “Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor- mediated inhibition of cAMP formation,” Brain Res., 1207, 111–119 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. T. N. Ivanova and P. M. Iuvone, “Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells,” Brain Res., 991, No. 1–2, 96–103 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. C. R. Jackson, S. S. Chaurasia, H. Zhou, et al., “Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells,” J. Neurochem., 109, No. 1, 148–157 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. F. Kawai, M. Horiguchi, and E. Miyachi, “Dopamine modulates the voltage response of human rod photoreceptors by inhibiting the h current,” Invest. Ophthalmol. Vis. Sci., 52, No. 7, 4113–4117 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. J. W. Kebabian and D. B. Calne, “Multiple receptors for dopamine,” Nature, 277, No. 5692, 93–96 (1979).

  43. P. W. Keeley and B. E. Reese, “Morphology of dopaminergic amacrine cells in the mouse retina: independence from homotypic interactions,” J. Comp. Neurol., 518, No. 8, 1220–1231 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. A. E. Kiselevsky, S. J. Mulligan, C. Altier, et al., “D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry,” Neuron, 58, No. 4, 557–570 (2008).

  45. A. E. Kiselevsky and G. W. Zamponi, “D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels,” Channels (Austin), 2, No. 4, 269–277 (2008).

  46. H. Kolb, N. Cuenca, H. H. Wang, and L. Dekorver, “The synaptic organization of the dopaminergic amacrine cell in the cat retina,” J. Neurocytol., 19, No. 3, 343–366 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. W. Kolbinger, D. Wagner, and H. J. Wagner, “Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals,” Cell Tissue Res., 285, No. 3, 445–451 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. D. Krizaj, “Mesopic state: cellular mechanisms involved in pre- and post-synaptic mixing of rod and cone signals,” Microsc. Res. Tech., 50, No. 5, 347–359 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. D. Krizaj, R. Gabriel, W. G. Owen, and P. Witkovksy, “Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina,” J. Comp. Neurol., 398, No. 4, 529–538 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. R. C. Kubrusly, M. C. Da Cunha, R. A. Reis, et al., “Expression of fun ctional receptors and transmitter enzymes in cultured Muller cells,” Brain Res., 1038, No. 2, 141–149 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. R. C. Kubrusly, M. Z. Guimaraes, A. P. Vieira, et al., “L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development,” J. Neurochem., 86, No. 1, 45–54 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. F. J. Lee, S. Xue, L. Pei, et al., “Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor,” Cell, 111, No. 2, 219–230 (2002).

  53. S. P. Lee, C. H. So, A. J. Rashid, et al., “Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal,” J. Biol. Chem., 279, No. 34, 35,671–35,678 (2004).

    Article  CAS  Google Scholar 

  54. H. Li, A. Z. Chuang, and J. O’Brien, “Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina,” J. Neurosci., 29, No. 48, 15,178–15,186 (2009).

    Article  CAS  Google Scholar 

  55. H. Li, Z. Zhang, M. R. Blackburn, et al., “Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina,” J. Neurosci., 33, No. 7, 3135–3150 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. F. Liu, Q. Wan, Z. B. Pristupa, et al., “Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors,” Nature, 403, No. 6767, 274–280 (2000).

  57. D. G. McMahon, P. M. Iuvone, and G. Tosini, “Circadian organization of the mammalian retina: From gene regulation to physiology and diseases,” Progr. Retin. Eye Res., 39, 58–76 (2014).

    Article  CAS  Google Scholar 

  58. C. Missale, S. R. Nash, S. W. Robinson, et al., “Dopamine receptors: from structure to function,” Physiol. Rev., 78, No. 1, 189–225 (1998).

    PubMed  CAS  Google Scholar 

  59. C. Mora-Ferrer, S. Yazulla, K. M. Studholme, and M. Haak-Frendscho, “Dopamine D1-receptor immunolocalization in goldfish retina,” J. Comp. Neurol., 411, No. 4, 705–714 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. Z. Muresan and J. Besharse, “D2-like dopamine receptors in amphibian retina: localization with fl uorescent ligands,” J. Comp. Neurol., 13, No. 2, 149–160 (1993).

    Article  Google Scholar 

  61. J. Nguyen-Legros, A. Simon, I. Caille, and B. Bloch, “Immunocytochemical localization of dopamine D1 receptors in the retina of mammals,” Vis. Neurosci., 14, No. 3, 545–551 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. J. Nguyen-Legros, C. Versauz-Botteri, and P. Vernier, “Dopamine receptor localization in the mammalian retina,” Mol. Neurobiol., 19, No. 3, 181–204 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. A. Nieoullon, “Dopamine and the regulation of cognition and attention,” Progr. Neurobiol., 67, No. 1, 53–83 (2002).

    Article  CAS  Google Scholar 

  64. A. Nieoullon and A. Coquerel, “Dopamine: a key regulator to adapt action, emotion, motivation and cognition,” Curr. Opin. Neurol., 16, Supplement 2, S3–S9 (2003).

  65. I Nir, J. M. Harrison, R. Haque, et al., “Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors,” J. Neurosci., 22, No. 6, 2063–2073 (2002).

    PubMed  CAS  Google Scholar 

  66. J. Z. Nowak, M. Przybysz, and E. Zurawska, “The melatonin generating system in the rat retina and pineal gland: effect of single and repeated electroconvulsive shock (ECS),” Pol. J. Pharmacol. Pharm., 40, No. 6, 573–584 (1988).

    PubMed  CAS  Google Scholar 

  67. J. Z. Nowak, Z. Urawska, and J. Zawilska, “Melatonin and its generating system in vertebrate retina: circadian rhythm, effect of environmental lighting and interaction with dopamine,” Neurochem. Int., 14, No. 4, 397–406 (1989).

    Article  PubMed  CAS  Google Scholar 

  68. M. J. Paglia, H. Mou, and R. H. Cote, “Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory gamma subunit re-evaluated,” J. Biol. Chem., 277, No. 7, 5017–5023 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. S. F. Pang, H. S. Yu, H. C. Suen, and G. M. Brown, “M Melatonin in the retina of rats: a diurnal rhythm,” J. Endocrinol., 87, No. 1, 89–93 (1980).

    Article  PubMed  CAS  Google Scholar 

  70. S Patel, K. L. Chapman, D. Marston, et al., “Pharmacological and functional characterisation of dopamine D4 receptors in the rat retina,” Neuropharmacology, 44, No. 8, 1038–1046 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. M. L. Perrault, A. Hasbi, M. Alijaniaram, et al., “The dopamine DID2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia,” J. Biol. Chem., 285, No. 47, 36,625–36,634 (2010).

    Article  CAS  Google Scholar 

  72. M. E. Pierce and J. C. Besharse, “Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length,” J. Gen. Physiol., 86, No. 5, 671–689 (1985).

    Article  PubMed  CAS  Google Scholar 

  73. E. Popova, “Role of dopamine in distal retina,” J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol., 200, No. 5, 333–358 (2014).

    Article  PubMed  CAS  Google Scholar 

  74. E. Popova and P. Kupenova, “Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes,” Vision Res., 88, 22–29 (2013).

    Article  PubMed  CAS  Google Scholar 

  75. K. Porrello and B. Burnside, “Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate,” J. Cell Biol., 98, No. 6, 2230–2238 (1984).

    Article  PubMed  CAS  Google Scholar 

  76. M. Puopolo, S. E. Hochstetler, S. Gustincich, et al., “Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation,” Neuron, 30, No. 1, 211–255 (2001).

  77. Z. X. Queen, R. Fertel, N. H. Neff, and M. Hadjiconstantinou, “Pharmacological characterization of rat retinal dopamine receptors,” J. Pharmacol. Exp. Ther., 248, No. 2, 621–625 (1989).

    Google Scholar 

  78. C. Ribelayga, Y. Cao, and S. C. Mangel, “The circadian clock in the retina controls rod-cone coupling,” Neuron, 59, No. 5, 790–801 (2008).

  79. C. Ribelayga and S. C. Mangel, “Identification of a circadian clock-controlled neural pathway in the rabbit retina,” PLoS One, 5, No. 6, e11020 (2010).

  80. B. Rohrer and W. K. Stell, “Localization of putative dopamine D2-like receptors in the chick retina, using in situ hybridization and immunocytochemistry,” Brain Res., 695, No. 2, 110–116 (1995).

    Article  PubMed  CAS  Google Scholar 

  81. A. Sahu, K. R. Tyeryar, H. O. Vongtau, et al., “D5 dopamine receptors are required for dopaminergic activation of phospholipase C,” Mol. Pharmacol., 75, No. 3, 447–453 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. C. Savy, F. Moussafi , J. Durand, et al., “Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey,” J. Comp. Neurol., 355, No. 3, 392–404 (1995).

    Article  PubMed  CAS  Google Scholar 

  83. T. Schneider and E. Zrenner, “Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat,” Exp. Eye Res., 52, No. 4, 425–430 (1991).

    Article  PubMed  CAS  Google Scholar 

  84. C. H. So, V. Verma, M. Alijuaniaram, et al., “Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine Dl-D2 receptor hetero- oligomers,” Mol. Pharmacol., 75, No. 4, 843–854 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. S. L. Stella, Jr. and W. B. Thoreson, “Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP,” Eur. J. Neurosci., 12, No. 10, 3537–3548 (2000).

    Article  PubMed  Google Scholar 

  86. G. Tosini, C. Bertolucci, and A. Foa, “The circadian system of reptiles: a multioscillatory and multiphotoreceptive system,” Physiol. Behav., 72, No. 4, 461–471 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. G. Tosini, S. S. S. Chaurasia, and I. P. Michael, “Regulation of arylalkylamine N-acetyltransferase (AANAT) in the retina,” Chronobiol. Int., 23, No. 1–2, 381–391 (2006).

    Article  PubMed  CAS  Google Scholar 

  88. G. Tosini and C. Fukuhara, “Photic and circadian regulation of retinal melatonin in mammals,” J. Neuroendocrinol., 15, No. 4, 364– 369 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. G. Tosini, N. Pozdeyev, K. Sakamoto, and P. M. Iuvone, “The circadian clock system in the mammalian retina,” Bioessays, 30, No. 7, 624–633 (2008).

  90. V. T. Tran and M. Dickman, “Differential localization of dopamine D1 and D2 receptors in rat retina,” Invest. Ophthalmol. Vis. Sci., 33, No. 5, 1620–1626 (1992).

    PubMed  CAS  Google Scholar 

  91. S. H. Tsang, M. L. Woodruff, K. M. Janisch, et al., “Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response,” J. Physiol., 579, No. 2, 303–312 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. D. Vallone, R. Picetti, and E. Borrelli, “Structure and function of dopamine receptors,” Neurosci. Biobehav. Rev., 24, No. 1, 125–132 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. C. Versaux-Botteri, J. B. Gibert, J. Nguyen-Legros, and P. Vernier, “Molecular identifi cation of a dopamine D1b receptor in bovine retinal pigment epithelium,” Neurosci. Lett., 237, No. 1, 9–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  94. M. L. Veruki, “Dopaminergic neurons in the rat retina express dopamine D2/3 receptors,” Eur. J. Neurosci., 9, No. 5, 1096–1100 (1997).

    Article  PubMed  CAS  Google Scholar 

  95. M. L. Veruki and H. Wassle, “Immunohistochemical localization of dopamine D1 receptors in rat retina,” Eur. J. Neurosci., 8, No. 11, 2286–2297 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. T. Vuvani, M. Geffard, P. Denis, et al., “Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptors on rods in the rat retina,” Brain Res., 614, No. 1–2, 57–64 (1993).

    Article  Google Scholar 

  97. H. J. Wagner, B. G. Luo, M. A. Ariano, et al., “Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies,” J. Comp. Neurol., 331, No. 4, 469–481 (1993).

    Article  PubMed  CAS  Google Scholar 

  98. A. F. Wiechmann, D. Bok, and J. Horwitz, “Melatonin-binding in the frog retina: autoradiographic and biochemical analysis,” Invest. Ophthalmol. Vis. Sci., 27, No. 2, 153–163 (1986).

    PubMed  CAS  Google Scholar 

  99. A. F. Wiechmann and D. M. Sherry, “Role of melatonin and its receptors in the vertebrate retina,” Int. Rev. Cell Mol. Biol., 300, 211–242 (2013).

    Article  PubMed  CAS  Google Scholar 

  100. P. Witkovsky, “Dopamine and retinal function,” Doc. Ophthalmol., 108, No. 1, 17–40 (2004).

    Article  PubMed  Google Scholar 

  101. P. Witkovsky, J. Zhang, and O. Blam, “Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells,” Cell Tissue Res., 278, No. 1, 45–56 (1994).

    PubMed  CAS  Google Scholar 

  102. E. Zurawska and J. Z. Nowak, “Serotonin N-acetyltransferase (NAT) induction in mammalian retina: role of cyclic AMP and calcium ions,” Folia Histochem. Cytobiol., 30, No. 1, 5–11 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Firsov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 7, pp. 777–790, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsov, M.L., Astakhova, L.A. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. Neurosci Behav Physi 46, 138–145 (2016). https://doi.org/10.1007/s11055-015-0210-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0210-9

Keywords

Navigation