Skip to main content
Log in

Protein trap: a new Swiss army knife for geneticists?

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The protein trap is a powerful tool for genetic and biochemical studies of gene function in the animal kingdom. Although the original protein trap was developed for flies, it can be easily adapted to other multicellular organisms, both known models and ones with an unsequenced genome. The protein trap has been successfully applied to the fruit fly, crustaceans Parhyale hawaiensis, zebrafish, and insect and animal cell cultures. This approach is based on the integration into genes of an artificial exon that carries DNA encoding a fluorescent marker, standardized immunoepitopes, an integrase docking site, and splice acceptor and donor sites. The protein trap for cell cultures additionally contains an antibiotic resistance gene, which facilitates the selection of trapped clones. Resulting chimeric tagged mRNAs can be interfered by dsRNA against GFP (iGFPi—in vivo GFP interference), or the chimeric proteins can be efficiently knocked down by deGradFP technology. Both RNA and protein knockdowns produce a strong loss of function phenotype in tagged cells. The fluorescent and protein affinity tags can be used for tagged protein localisation within the cell and for identifying their binding partners in their native complexes. Insertion into protein trap integrase docking sites allows the replacement of trap contents by any new constructs, including other markers, cell toxins, stop-codons, and binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS, that reliably reflect endogenous gene expression. A distinctive feature of the protein trap approach is that all manipulations with a gene or its product occur only in the endogenous locus, which cannot be achieved by any other method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2: Visualisation of RNA-binding proteins containing GFP-coding exon in the Drosophila melanogaster’s oogenesis

Similar content being viewed by others

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    CAS  PubMed  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    CAS  PubMed  Google Scholar 

  4. Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369(6479):400–403

    CAS  PubMed  Google Scholar 

  5. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163

    CAS  PubMed  Google Scholar 

  6. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    CAS  PubMed  Google Scholar 

  7. Stepanenko OV, Verkhusha VV, Kuznetsova IM, Turoverov KK (2007) Fluorescent proteins: physical-chemical properties and application in cell biology. Tsitologiia 49(5):395–420

    CAS  PubMed  Google Scholar 

  8. Sineshchekova OO, Kawate T, Vdovychenko OV, Sato TN (2004) Protein-trap version 2.1: screening for expressed proteins in mammalian cells based on their localizations. BMC Cell Biol 5:8

    PubMed  PubMed Central  Google Scholar 

  9. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97(7):3718–3723

    CAS  PubMed  Google Scholar 

  10. Misawa K, Nosaka T, Morita S, Kaneko A, Nakahata T, Asano S, Kitamura T (2000) A method to identify cDNAs based on localization of green fluorescent protein fusion products. Proc Natl Acad Sci USA 97(7):3062–3066

    CAS  PubMed  Google Scholar 

  11. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci USA 98(26):15050–15055

    CAS  PubMed  Google Scholar 

  12. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genom 5(1):62

    Google Scholar 

  13. Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG (2005) Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant Biol 5:9

    PubMed  PubMed Central  Google Scholar 

  14. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA 92(15):7036–7040

    CAS  PubMed  Google Scholar 

  15. Quiñones-Coello AT, Petrella LN, Ayers K, Melillo A, Mazzalupo S, Hudson AM, Wang S, Castiblanco C, Buszczak M, Hoskins RA, Cooley L (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175(3):1089–1104

    PubMed  PubMed Central  Google Scholar 

  16. Zheng XH, Hughes SH (1999) An avian sarcoma/leukosis virus-based gene trap vector for mammalian cells. J Virol 73(8):6946–6952

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jarvik JW, Adler SA, Telmer CA, Subramaniam V, Lopez AJ (1996) CD-tagging: a new approach to gene and protein discovery and analysis. Biotechniques 20(5):896–904

    CAS  PubMed  Google Scholar 

  18. Smith DJ (1997) Mini-exon epitope tagging for analysis of the protein coding potential of genomic sequence. Biotechniques 23(1):116–120

    CAS  PubMed  Google Scholar 

  19. Clyne PJ, Brotman JS, Sweeney ST, Davis G (2003) Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165(3):1433–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pastor-Pareja JC, Xu T (2011) Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and perlecan. Dev Cell 21(2):245–256

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morin X (2003) In vivo protein trapping in Drosophila. Brief Funct Genom Proteom 2(2):137–141

    CAS  Google Scholar 

  22. Aleksic J, Lazic R, Müller I, Russell SR, Adryan B (2009) Biases in Drosophila melanogaster protein trap screens. BMC Genom 10:249

    Google Scholar 

  23. Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188(3):731–743

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167(2):761–781

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Venken KJ, Bellen HJ (2005) Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet 6(3):167–178

    CAS  PubMed  Google Scholar 

  26. Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, Drummond E, Spriggs H, Drummond J, Magbanua JP, Naylor H, Sanson B, Bastock R, Huelsmann S, Trovisco V, Landgraf M, Knowles-Barley S, Armstrong JD, White-Cooper H, Hansen C, Phillips RG, Lilley KS, Russell S, St Johnston D, U. D. P. T. S. Consortium (2014) Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141(20):3994–4005

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41(1):98–105

    CAS  PubMed  Google Scholar 

  28. Neumüller RA, Wirtz-Peitz F, Lee S, Kwon Y, Buckner M, Hoskins RA, Venken KJ, Bellen HJ, Mohr SE, Perrimon N (2012) Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. Genetics 190(3):931–940

    PubMed  PubMed Central  Google Scholar 

  29. Rees JS, Lowe N, Armean IM, Roote J, Johnson G, Drummond E, Spriggs H, Ryder E, Russell S, St Johnston D, Lilley KS (2011) In vivo analysis of proteomes and interactomes using parallel affinity capture (iPAC) coupled to mass spectrometry. Mol Cell Proteom 10(6):M110.002386

    Google Scholar 

  30. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3(11):887–889

    CAS  PubMed  Google Scholar 

  31. Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA (2003) piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci USA 100(13):7720–7725

    PubMed  Google Scholar 

  32. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):283–287

    CAS  PubMed  Google Scholar 

  33. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92(24):10824–10830

    CAS  PubMed  Google Scholar 

  34. Kontarakis Z, Pavlopoulos A, Kiupakis A, Konstantinides N, Douris V, Averof M (2011) A versatile strategy for gene trapping and trap conversion in emerging model organisms. Development 138(12):2625–2630

    CAS  PubMed  Google Scholar 

  35. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8(9):737–743

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Metaxakis A, Oehler S, Klinakis A, Savakis C (2005) Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171(2):571–581

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2015) “A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife 4:e05338

    PubMed Central  Google Scholar 

  38. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin CC, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8(3):231–237

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Diao F, Ironfield H, Luan H, Shropshire WC, Ewer J, Marr E, Potter CJ, Landgraf M, White BH (2015) Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 10(8):1410–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gnerer JP, Venken KJ, Dierick HA (2015) Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Res 43(8):e56

    PubMed  PubMed Central  Google Scholar 

  41. Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175(3):1505–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelso RJ, Buszczak M, Quiñones AT, Castiblanco C, Mazzalupo S, Cooley L (2004) Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res 32:D418–D420

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lye CM, Naylor HW, Sanson B (2014) Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 141(20):4006–4017

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dorogova NV, Nerusheva OO, Omelyanchuk LV (2009) Structural organization and dynamics of the endoplasmic reticulum during spermatogenesis of Drosophila melanogaster: studies using PDI-GFP chimera protein. Biochem Moscow Suppl Ser A 3:55. https://doi.org/10.1134/S1990747809010073

    Article  Google Scholar 

  45. Rohrbaugh M, Clore A, Davis J, Johnson S, Jones B, Jones K, Kim J, Kithuka B, Lunsford K, Mitchell J, Mott B, Ramos E, Tchedou MR, Acosta G, Araujo M, Cushing S, Duffy G, Graves F, Griffin K, Gurudatta BV, Jackson D, Jaimes D, Jamison K, Kelley D, Kilgore M, Laramore D, Le T, Mazhar B, Mazhar MM, McCrary B, Miller T, Moreland C, Mullins A, Munye E, Okoorie S, Pittman E, Roberts N, Rose D, Rowland A, Shagarabi A, Smith J, Stallworth T, Stroud N, Sung E, Sung K, Takenaka N, Torre E, Veira J, Vu K, Wagstaff W, Wood AM, Wu K, Yang J, Corces VG (2013) Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines. PLoS ONE 8(1):e53091

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nerusheva OO, Dorogova NV, Gubanova NV, Yudina OS, Omelyanchuk LV (2009) A GFP trap study uncovers the functions of Gilgamesh protein kinase in Drosophila melanogaster spermatogenesis. Cell Biol Int 33(5):586–593

    CAS  PubMed  Google Scholar 

  47. Hsu HJ, Drummond-Barbosa D (2017) A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 23–24:13–21

    PubMed  PubMed Central  Google Scholar 

  48. Roignant JY, Carré C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9(3):299–308

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8(5):405–407

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Caussinus E, Kanca O, Affolter M (2011) Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 19(1):117–121

    PubMed  Google Scholar 

  51. Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteom 7(2):282–289

    CAS  Google Scholar 

  52. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94(6):2122–2127

    CAS  PubMed  Google Scholar 

  53. Rouwendal GJ, Mendes O, Wolbert EJ, Douwe de Boer A (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33(6):989–999

    CAS  PubMed  Google Scholar 

  54. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2(12):975–979

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166(4):1775–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97(11):5995–6000

    CAS  PubMed  Google Scholar 

  57. Lister JA (2010) Transgene excision in zebrafish using the phiC31 integrase. Genesis 48(2):137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Minorikawa S, Nakayama M (2011) Recombinase-mediated cassette exchange (RMCE) and BAC engineering via VCre/VloxP and SCre/SloxP systems. Biotechniques 50(4):235–246

    CAS  PubMed  Google Scholar 

  59. Farruggio AP, Bhakta MS, Calos MP (2017) Use of the DICE (dual integrase cassette exchange) system. Methods Mol Biol 1642:69–85

    CAS  PubMed  Google Scholar 

  60. Kuehle J, Turan S, Cantz T, Hoffmann D, Suerth JD, Maetzig T, Zychlinski D, Klein C, Steinemann D, Baum C, Bode J, Schambach A (2014) Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of “factor-free” induced pluripotent stem cells. Mol Ther 22(5):919–928

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF (2019) Systematic evaluation of site-specific recombinant gene expression for programmable mammalian cell engineering. ACS Synth Biol 8(4):758–774

    PubMed  Google Scholar 

  62. Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J Mol Biol 402(1):52–69

    CAS  PubMed  Google Scholar 

  63. Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27

    CAS  PubMed  Google Scholar 

  64. Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C (2007) The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 8(Suppl 1):S2

    PubMed  PubMed Central  Google Scholar 

  65. Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S (2007) Transposon mediated transgenesis in a marine invertebrate chordate: ciona intestinalis. Genome Biol 8(Suppl 1):S3

    PubMed  PubMed Central  Google Scholar 

  66. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    PubMed  PubMed Central  Google Scholar 

  67. Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305(2):616–624

    CAS  PubMed  Google Scholar 

  68. Shibano T, Takeda M, Suetake I, Kawakami K, Asashima M, Tajima S, Taira M (2007) Recombinant Tol2 transposase with activity in Xenopus embryos. FEBS Lett 581(22):4333–4336

    CAS  PubMed  Google Scholar 

  69. Urasaki A, Mito T, Noji S, Ueda R, Kawakami K (2008) Transposition of the vertebrate Tol2 transposable element in Drosophila melanogaster. Gene 425(1–2):64–68

    CAS  PubMed  Google Scholar 

  70. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8(6):506–515

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Trinh LA, Hochgreb T, Graham M, Wu D, Ruf-Zamojski F, Jayasena CS, Saxena A, Hawk R, Gonzalez-Serricchio A, Dixson A, Chow E, Gonzales C, Leung HY, Solomon I, Bronner-Fraser M, Megason SG, Fraser SE (2011) A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 25(21):2306–2320

    CAS  PubMed Central  Google Scholar 

  72. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144

    CAS  PubMed  Google Scholar 

  73. Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2(11):e169

    PubMed  PubMed Central  Google Scholar 

  74. Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123(7):513–529

    CAS  PubMed  Google Scholar 

  75. Trinh LA, Fraser SE (2013) Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Dev Growth Differ 55(4):434–445

    CAS  Google Scholar 

  76. Bialkowska A, Zhang XY, Reiser J (2005) Improved tagging strategy for protein identification in mammalian cells. BMC Genom 6:113

    Google Scholar 

  77. Kontarakis Z, Konstantinides N, Pavlopoulos A, Averof M (2011) Reconfiguring gene traps for new tasks using iTRAC. Fly (Austin) 5(4):352–355

    CAS  Google Scholar 

Download references

Funding

This study was supported by the ICG SB RAS budget Project No. 0324-2019- 0042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Fedorova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, S.A., Dorogova, N.V. Protein trap: a new Swiss army knife for geneticists?. Mol Biol Rep 47, 1445–1458 (2020). https://doi.org/10.1007/s11033-019-05181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05181-z

Keywords

Navigation