Abstract
The innate immune system of mammalian cells is the first line of defense against pathogenic microorganisms. Phagocytes, which play the central role in this system, engulf microorganisms by a mechanism that involves pattern recognition receptors on their own surface and pathogen-associated molecular patterns (PAMPs) expressed by the microorganism. Components of PAMPs include glycans (polysaccharides) and glycoconjugates (carbohydrates covalently linked to other biological molecules). Pathogenic microorganisms display specific binding affinity to various types of glycosphingolipids (sphingosine-containing glycolipids; GSLs), and GSLs are involved in host–pathogen interactions. We observed that lactosylceramide (LacCer), a neutral GSL, binds directly to certain pathogen-specific molecules (e.g., Candida albicans-derived β-glucans, mycobacterial lipoarabinomannan) via carbohydrate-carbohydrate interaction. LacCer is expressed highly on human neutrophils, and forms membrane microdomains. Such LacCer-enriched microdomains mediate several important neutrophil functions, including chemotaxis, phagocytosis, and superoxide generation. Human neutrophils phagocytose pathogenic mycobacteria (including Mycobacterium tuberculosis) through carbohydrate-carbohydrate interaction between LacCer on their own surface and mannose-capped lipoarabinomannan on the bacterium. During recognition of pathogen-specific glycans, direct association of LacCer-containing C24 fatty acid chain with Lyn (a Src family kinase) is necessary for signal transduction from the neutrophil exterior to interior. Pathogenic mycobacteria utilize a similar interaction to avoid killing by neutrophils. We describe here the mechanisms whereby LacCer mediates neutrophil immune systems via carbohydrate-carbohydrate interaction.
Similar content being viewed by others
References
Pike, L.J.: Lipid Rafts: Bringing Order to Chaos. J. Lipid Res. 1, 1 (2003)
Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature. 387(6633), 569–572 (1997)
Hakomori, S.: Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10(1), 16–24 (2003). https://doi.org/10.1097/00062752-200301000-00004
Brown, D.A., London, E.: Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240(1), 1–7 (1997)
Iwabuchi, K.: Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol. Biol. 1804, 83–95 (2018). https://doi.org/10.1007/978-1-4939-8552-4_4
Iwabuchi, K., Handa, K., Hakomori, S.: Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273(50), 33766–33773 (1998)
Hakomori, S.: The glycosynapse. Proc. Natl. Acad. Sci. USA. 99(1), 225–232 (2002). https://doi.org/10.1073/pnas.012540899
Fujita, A., Cheng, J., Fujimoto, T.: Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim. Biophys. Acta. 1791(5), 388–396 (2009)
Iwabuchi, K., Prinetti, A., Sonnino, S., Mauri, L., Kobayashi, T., Ishii, K., Kaga, N., Murayama, K., Kurihara, H., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H., Nagaoka, I.: Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 25(4), 357–374 (2008). https://doi.org/10.1007/s10719-007-9084-6
Koyama-Honda, I., Fujiwara, T.K., Kasai, R.S., Suzuki, K.G.N., Kajikawa, E., Tsuboi, H., Tsunoyama, T.A., Kusumi, A.: High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J. Cell Biol. 219(12) (2020). https://doi.org/10.1083/jcb.202006125
Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R., Pagano, R.E.: Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell. 14(8), 3254–3265 (2003). https://doi.org/10.1091/mbc.E02-12-0809
Suzuki, K.G., Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A.: GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177(4), 717–730 (2007). https://doi.org/10.1083/jcb.200609174
Saxena, K., Zimmermann, P., Schmidt, R.R., Shipley, G.G.: Bilayer properties of totally synthetic C16:0-lactosyl-ceramide. Biophys. J. 78(1), 306–312 (2000)
Ferraretto, A., Pitto, M., Palestini, P., Masserini, M.: Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry. 36(30), 9232–9236 (1997). https://doi.org/10.1021/bi970428j
Iwabuchi, K., Nagaoka, I.: Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood. 100(4), 1454–1464 (2002)
Hakomori, S.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta. 1780(3), 325–346 (2008). https://doi.org/10.1016/j.bbagen.2007.08.015
Hakomori, S.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17(3–4), 143–151 (2000). https://doi.org/10.1023/a:1026524820177
Hakomori, S.: Traveling for the glycosphingolipid path. Glycoconj. J. 17(7–9), 627–647 (2000). https://doi.org/10.1023/a:1011086929064
Iwabuchi, K., Masuda, H., Kaga, N., Nakayama, H., Matsumoto, R., Iwahara, C., Yoshizaki, F., Tamaki, Y., Kobayashi, T., Hayakawa, T., Ishii, K., Yanagida, M., Ogawa, H., Takamori, K.: Properties and functions of lactosylceramide from mouse neutrophils. Glycobiology. 25(6), 655–668 (2015). https://doi.org/10.1093/glycob/cwv008
Shima, S., Kawamura, N., Ishikawa, T., Masuda, H., Iwahara, C., Niimi, Y., Ueda, A., Iwabuchi, K., Mutoh, T.: Anti-neutral glycolipid antibodies in encephalomyeloradiculoneuropathy. Neurology. 82(2), 114–118 (2014). https://doi.org/10.1212/wnl.0000000000000015
Ariga, T., Yu, R.K.: Antiglycolipid antibodies in Guillain-Barre syndrome and related diseases: review of clinical features and antibody specificities. J. Neurosci. Res. 80(1), 1–17 (2005). https://doi.org/10.1002/jnr.20395
Nakayama, H., Yoshizaki, F., Prinetti, A., Sonnino, S., Mauri, L., Takamori, K., Ogawa, H., Iwabuchi, K.: Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J. Leukoc Biol. 83(3), 728–741 (2008). https://doi.org/10.1189/jlb.0707478
Sato, T., Iwabuchi, K., Nagaoka, I., Adachi, Y., Ohno, N., Tamura, H., Seyama, K., Fukuchi, Y., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H.: Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J. Leukoc Biol. 80(1), 204–211 (2006). https://doi.org/10.1189/jlb.0106069
Levy, M., Futerman, A.H.: Mammalian ceramide synthases. IUBMB Life. 62(5), 347–356 (2010). https://doi.org/10.1002/iub.319
Nakayama, H., Nagafuku, M., Suzuki, A., Iwabuchi, K., Inokuchi, J.I.: The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett. 592(23), 3921–3942 (2018). https://doi.org/10.1002/1873-3468.13275
Iwabuchi, K.: Lactosylceramide-enriched Lipid Raft-mediated Infection Immunity. Med. Mycol. J. 59(3), J51-j61 (2018). https://doi.org/10.3314/mmj.18.008
Grant, C.W., Mehlhorn, I.E., Florio, E., Barber, K.R.: A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim. Biophys. Acta. 902(2), 169–177 (1987)
Morrow, M.R., Singh, D., Lu, D., Grant, C.W.: Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophys. J. 68(1), 179–186 (1995)
Li, X.M., Momsen, M.M., Brockman, H.L., Brown, R.E.: Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys. J. 83(3), 1535–1546 (2002). https://doi.org/10.1016/S0006-3495(02)73923-4
Chiricozzi, E., Ciampa, M.G., Brasile, G., Compostella, F., Prinetti, A., Nakayama, H., Ekyalongo, R.C., Iwabuchi, K., Sonnino, S., Mauri, L.: Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J. Lipid Res. 56(1), 129–141 (2015). https://doi.org/10.1194/jlr.M055319
Ullrich, A., Schlessinger, J.: Signal transduction by receptors with tyrosine kinase activity. Cell. 61(2), 203–212 (1990)
Sato, S.B., Ishii, K., Makino, A., Iwabuchi, K., Yamaji-Hasegawa, A., Senoh, Y., Nagaoka, I., Sakuraba, H., Kobayashi, T.: Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279(22), 23790–23796 (2004). https://doi.org/10.1074/jbc.M313568200
Okubo, K., Brenner, M.D., Cullere, X., Saggu, G., Patchen, M.L., Bose, N., Mihori, S., Yuan, Z., Lowell, C.A., Zhu, C., Mayadas, T.N.: Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep. 35(7), 109142 (2021). https://doi.org/10.1016/j.celrep.2021.109142
Medzhitov, R., Janeway, C., Jr.: Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000)
Nakayama, H., Ogawa, H., Takamori, K., Iwabuchi, K.: GSL-enriched membrane microdomains in innate immune responses. Arch. Immunol. Ther. Exp. (Warsz) 61(3), 217–228 (2013). https://doi.org/10.1007/s00005-013-0221-6
Nakayama, H., Kurihara, H., Morita, Y.S., Kinoshita, T., Mauri, L., Prinetti, A., Sonnino, S., Yokoyama, N., Ogawa, H., Takamori, K., Iwabuchi, K.: Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci. Signal. 9(449), ra101 (2016). https://doi.org/10.1126/scisignal.aaf1585
Tsai, B., Gilbert, J.M., Stehle, T., Lencer, W., Benjamin, T.L., Rapoport, T.A.: Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22(17), 4346–4355 (2003)
Naroeni, A., Porte, F.: Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 70(3), 1640–1644 (2002)
Nagafuku, M., Okuyama, K., Onimaru, Y., Suzuki, A., Odagiri, Y., Yamashita, T., Iwasaki, K., Fujiwara, M., Takayanagi, M., Ohno, I., Inokuchi, J.: CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. USA. 109(6), E336-342 (2012). https://doi.org/10.1073/pnas.1114965109
Angstrom, J., Teneberg, S., Milh, M.A., Larsson, T., Leonardsson, I., Olsson, B.M., Halvarsson, M.O., Danielsson, D., Naslund, I., Ljungh, A., Wadstrom, T., Karlsson, K.A.: The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology 8(4), 297–309 (1998)
Hahn, P.Y., Evans, S.E., Kottom, T.J., Standing, J.E., Pagano, R.E., Limper, A.H.: Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278(3), 2043–2050 (2003)
Karlsson, K.A.: Animal glycolipids as attachment sites for microbes. Chem. Phys. Lipid. 42(1–3), 153–172 (1986)
Ohno, N., Uchiyama, M., Tsuzuki, A., Tokunaka, K., Miura, N.N., Adachi, Y., Aizawa, M.W., Tamura, H., Tanaka, S., Yadomae, T.: Solubilization of yeast cell-wall beta-(1–>3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr. Res. 316(1–4), 161–172 (1999)
Miura, N.N., Adachi, Y., Yadomae, T., Tamura, H., Tanaka, S., Ohno, N.: Structure and biological activities of beta-glucans from yeast and mycelial forms of Candida albicans. Microbiol. Immunol. 47(3), 173–182 (2003)
Zimmerman, J.W., Lindermuth, J., Fish, P.A., Palace, G.P., Stevenson, T.T., DeMong, D.E.: A novel carbohydrate-glycosphingolipid interaction between a beta-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem. 273(34), 22014–22020 (1998)
Kaur, D., Obregon-Henao, A., Pham, H., Chatterjee, D., Brennan, P.J., Jackson, M.: Lipoarabinomannan of Mycobacterium: mannose capping by a multifunctional terminal mannosyltransferase. Proc. Natl. Acad. Sci. USA. 105(46), 17973–17977 (2008). https://doi.org/10.1073/pnas.0807761105
Kang, P.B., Azad, A.K., Torrelles, J.B., Kaufman, T.M., Beharka, A., Tibesar, E., DesJardin, L.E., Schlesinger, L.S.: The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 202(7), 987–999 (2005). https://doi.org/10.1084/jem.20051239
Fratti, R.A., Chua, J., Vergne, I., Deretic, V.: Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA. 100(9), 5437–5442 (2003). https://doi.org/10.1073/pnas.0737613100
Gaur, R.L., Ren, K., Blumenthal, A., Bhamidi, S., Gonzalez-Nilo, F.D., Jackson, M., Zare, R.N., Ehrt, S., Ernst, J.D., Banaei, N.: LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 10(9), e1004376 (2014). https://doi.org/10.1371/journal.ppat.1004376
Shukla, S., Richardson, E.T., Athman, J.J., Shi, L., Wearsch, P.A., McDonald, D., Banaei, N., Boom, W.H., Jackson, M., Harding, C.V.: Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog. 10(10), e1004471 (2014). https://doi.org/10.1371/journal.ppat.1004471
Souza, C., Davis, W.C., Eckstein, T.M., Sreevatsan, S., Weiss, D.J.: Mannosylated lipoarabinomannans from Mycobacterium avium subsp. paratuberculosis alters the inflammatory response by bovine macrophages and suppresses killing of Mycobacterium avium subsp. avium organisms. PloS One. 8(9), e75924 (2013). https://doi.org/10.1371/journal.pone.0075924
Appelmelk, B.J., den Dunnen, J., Driessen, N.N., Ummels, R., Pak, M., Nigou, J., Larrouy-Maumus, G., Gurcha, S.S., Movahedzadeh, F., Geurtsen, J., Brown, E.J., Eysink Smeets, M.M., Besra, G.S., Willemsen, P.T., Lowary, T.L., van Kooyk, Y., Maaskant, J.J., Stoker, N.G., van der Ley, P., Puzo, G., Vandenbroucke-Grauls, C.M., Wieland, C.W., van der Poll, T., Geijtenbeek, T.B., van der Sar, A.M., Bitter, W.: The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell. Microbiol. 10(4), 930–944 (2008)
Mestas, J., Hughes, C.C.: Of mice and not men: differences between mouse and human immunology. J. Immunol. 172(5), 2731–2738 (2004)
Wagner, H.: The immunobiology of the TLR9 subfamily. Trends Immunol. 25(7), 381–386 (2004). https://doi.org/10.1016/j.it.2004.04.011
Mishra, A.K., Driessen, N.N., Appelmelk, B.J., Besra, G.S.: Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 35(6), 1126–1157 (2011). https://doi.org/10.1111/j.1574-6976.2011.00276.x
Kina, K., Masuda, H., Nakayama, H., Nagatsuka, Y., Nabetani, T., Hirabayashi, Y., Takahashi, Y., Shimada, K., Daida, H., Ogawa, H., Takamori, K., Iwabuchi, K.: The novel neutrophil differentiation marker phosphatidylglucoside mediates neutrophil apoptosis. J. Immunol. 186(9), 5323–5332 (2011). https://doi.org/10.4049/jimmunol.1002100
Acknowledgements
Our research studies mentioned in this review were initiated and encouraged by Dr. Sen-itiroh Hakomori (The Biomembrane Institute and Dept. of Pathobiology, University of Washington, Seattle, WA, USA), for which we are highly appreciative. Our recent studies were supported in part by grants from Foundation of Strategic Research Projects in Private Universities (S1311011) and AMED under Grant Numbers 21gm0910006h0106 and 20ae0101068h0005 (to K.I.); JSPS KAKENHI under Grant Numbers JP17K10031, JP21K06086 (to H.N.) and JP20K17471 (to K.H.). We are grateful to Dr. S. Anderson for English editing of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Tribute to Professor Sen-itiroh Hakomori
Rights and permissions
About this article
Cite this article
Iwabuchi, K., Nakayama, H. & Hanafusa, K. Lactosylceramide-enriched microdomains mediate human neutrophil immunological functions via carbohydrate-carbohydrate interaction. Glycoconj J 39, 239–246 (2022). https://doi.org/10.1007/s10719-022-10060-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10719-022-10060-0