Skip to main content

Advertisement

Log in

Evidence for association between hepatitis C virus and Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a globally prevalent neurodegenerative disorder, characterized by progressive neuronal loss in the substantia nigra and formation of Lewy bodies. These pathological characteristics are clinically translated into motor symptoms, such as bradykinesia, rigidity, resting tremors, and postural instability. Emerging data from epidemiological studies suggest a possible association between PD and hepatitis C virus (HCV) infection, which affects up to 71 million individuals worldwide. Preclinical studies have shown that HCV can penetrate and replicate within the brain macrophages and microglial cells, increasing their production of pro-inflammatory cytokines that can directly cause neuronal toxicity. Other studies reported that interferon, previously used to treat HCV infection, can increase the risk of PD through inhibition of the nigrostriatal dopaminergic transmission or induction of neuroinflammation. In this article, we provide a comprehensive review on the possible association between HCV infection and PD and highlight recommendations for further research and practice in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  3. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. doi:10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  4. De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  5. Ahmed H, Abushouk AI, Gabr M, Negida A, Abdel-Daim MM (2017) Parkinson’s disease and pesticides: a meta-analysis of disease connection and genetic alterations. Biomed Pharmacother 90:638–649

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi M, Yamada T (1999) Viral etiology for Parkinson’s disease—a possible role of influenza A virus infection. Jpn J Infect Dis 52:89–98

    CAS  PubMed  Google Scholar 

  7. Marttila RJ, Arstila P, Nikoskelainen J, Halonen PE, Rinne UK (1977) Viral antibodies in the sera from patients with Parkinson disease. Eur Neurol 15:25–33

    Article  CAS  PubMed  Google Scholar 

  8. The Polaris Observatory HCV collaborators (2017) Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol & Hepatol 2:161–176

    Article  Google Scholar 

  9. Davis GL, Alter MJ, El-Serag H, Poynard T, Jennings LW (2010) Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology 138:513–521, 521.e1–6. doi:10.1053/j.gastro.2009.09.067

    Article  PubMed  Google Scholar 

  10. Blonski W, Reddy KR (2008) Hepatitis C virus infection and hepatocellular carcinoma. Clin Liver Dis 12:661–674. doi:10.1016/j.cld.2008.03.007

    Article  PubMed  Google Scholar 

  11. Heckmann JG, Kayser C, Heuss D, Manger B, Blum HE, Neundörfer B (1999) Neurological manifestations of chronic hepatitis C. J Neurol 246:486–491

    Article  CAS  PubMed  Google Scholar 

  12. Sène D, Limal N, Cacoub P (2004) Hepatitis C virus-associated extrahepatic manifestations: a review. Metab Brain Dis 19:357–381

    Article  PubMed  Google Scholar 

  13. Laskus T, Radkowski M, Adair DM, Wilkinson J, Scheck AC, Rakela J (2005) Emerging evidence of hepatitis C virus neuroinvasion. AIDS 19(Suppl 3):S140–S144

    Article  PubMed  Google Scholar 

  14. Wu WY-Y, Kang K-H, Chen SL-S, Chiu SY-H, Yen AM-F, Fann JC-Y et al (2015) Hepatitis C virus infection: a risk factor for Parkinson’s disease. J Viral Hepat 22:784–791. doi:10.1111/jvh.12392

    Article  CAS  PubMed  Google Scholar 

  15. Tsai H-H, Liou H-H, Muo C-H, Lee C-Z, Yen R-F, Kao C-H (2016) Hepatitis C virus infection as a risk factor for Parkinson disease: a nationwide cohort study. Neurology 86:840–846. doi:10.1212/WNL.0000000000002307

    Article  PubMed  Google Scholar 

  16. Wangensteen KJ, Krawitt EL, Hamill RW, Boyd JT (2016) Parkinsonism in patients with chronic hepatitis C treated with interferons. Clin Neuropharmacol 39:1–5. doi:10.1097/WNF.0000000000000120

    Article  CAS  PubMed  Google Scholar 

  17. Gowans EJ (2000) Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 20:85–102

    Article  CAS  PubMed  Google Scholar 

  18. Radkowski M, Wilkinson J, Nowicki M, Adair D, Vargas H, Ingui C et al (2002) Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication. J Virol 76:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adair DM, Wilkinson J, Scheck AC, Radkowski M, Rakela J, Laskus T (2004) Differential display and microarray analysis show differentially expressed genes in central nervous system in HCV infected patients and laser capture microscopy points to brain microglia as cells harboring HCV. Hepatology, vol. 40, John Wiley & Sons Inc 111 River St, Hoboken, NJ 07030 USA, p. 433A

  20. Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM et al (2012) Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142:634–643.e6

    Article  CAS  PubMed  Google Scholar 

  21. Lucchese G, Kanduc D (2014) Single amino acid repeats connect viruses to neurodegeneration. Curr Drug Discov Technol 11:214–219

    Article  CAS  PubMed  Google Scholar 

  22. Qian L, Flood PM, Hong J-S (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forton DM, Allsop JM, Main J, Foster GR, Thomas HC, Taylor-Robinson SD (2001) Evidence for a cerebral effect of the hepatitis C virus. Lancet 358:38–39

    Article  CAS  PubMed  Google Scholar 

  24. Lyons PD, Benveniste EN (1998) Cleavage of membrane-associated ICAM-1 from astrocytes: involvement of a metalloprotease. Glia 22:103–112

    Article  CAS  PubMed  Google Scholar 

  25. Gill SS, Hou Y, Ghane T, Pulido OM (2008) Regional susceptibility to domoic acid in primary astrocyte cells cultured from the brain stem and hippocampus. Mar Drugs 6:25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheridan GK, Dev KK (2012) S1P1 receptor subtype inhibits demyelination and regulates chemokine release in cerebellar slice cultures. Glia 60:382–392. doi:10.1002/glia.22272

    Article  PubMed  Google Scholar 

  27. Fiala M, Avagyan H, Merino JJ, Bernas M, Valdivia J, Espinosa-Jeffrey A et al (2013) Chemotactic and mitogenic stimuli of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy. Pathophysiol: Off J Int Soc Pathophysiol 20:59–69. doi:10.1016/j.pathophys.2012.02.003

    Article  CAS  Google Scholar 

  28. Lane TE, Liu MT, Chen BP, Asensio VC, Samawi RM, Paoletti AD et al (2000) A central role for CD4(+) T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J Virol 74:1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chao C, Ghorpade A (2009) Production and roles of glial tissue inhibitor of metalloproteinases-1 in human immunodeficiency virus-1-associated dementia neuroinflammation: a review. Am J Infect Dis 5:314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stetler-Stevenson WG (2008) Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Science Signaling 1:re6. doi:10.1126/scisignal.127re6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weissenborn K, Ennen JC, Bokemeyer M, Ahl B, Wurster U, Tillmann H et al (2006) Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment. Gut 55:1624–1630. doi:10.1136/gut.2005.080267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoofnagle JH, Mullen KD, Jones DB, Rustgi V, Di Bisceglie A, Peters M et al (1986) Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon. N Engl J Med 315:1575–1578

    Article  CAS  PubMed  Google Scholar 

  33. Chung RT, Baumert TF (2014) Curing chronic hepatitis C—the arc of a medical triumph. N Engl J Med 370:1576–1578. doi:10.1056/NEJMp1400986

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed H, Abushouk AI, Gadelkarim M, Mohamed A, Gabr M, Negida A (2017) Efficacy of daclatasvir plus peginterferon alfa and ribavirin for patients with chronic hepatitis C genotype 4 infection. Bangladesh J Pharmacol 12:12–22

    Article  Google Scholar 

  35. Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-α. CNS Drugs 19:105–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. LaRochelle JS, Karp BI (2004) Restless legs syndrome due to interferon-α. Mov Disord 19:730–731

    Article  PubMed  Google Scholar 

  37. Quarantini LC, Miranda-Scippa A, Parana R, Sampaio AS, Bressan RA (2007) Acute dystonia after injection of pegylated interferon alpha-2b. Mov Disord 22:747–748

    Article  PubMed  Google Scholar 

  38. Mizoi Y, Kaneko H, Oharazawa A, Kuroiwa H (1997) Parkinsonism in a patient receiving interferon alpha therapy for chronic hepatitis C. Rinsho Shinkeigaku 37:54–56

    CAS  PubMed  Google Scholar 

  39. Shuto H, Kataoka Y, Horikawa T, Fujihara N, Oishi R (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747:348–351

    Article  CAS  PubMed  Google Scholar 

  40. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R et al (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27:3328–3337. doi:10.1523/JNEUROSCI.5321-06.2007

    Article  CAS  PubMed  Google Scholar 

  41. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192. doi:10.1172/JCI36470

    CAS  PubMed  Google Scholar 

  42. De Almeida CMO, Galvão MDLDS, Ferreira PLDC, Braga WS (2009) Interferon-induced parkinsonism in a patient with chronic hepatitis C. Arq Neuropsiquiatr 67:715–716. doi:10.1590/S0004-282X2009000400031

    Article  PubMed  Google Scholar 

  43. Çubukçu HC, Yurtdaş M, Durak ZE, Aytaç B, Güneş HN, Çokal BG et al (2016) Oxidative and nitrosative stress in serum of patients with Parkinson’s disease. Neurol Sci 37:1793–1798. doi:10.1007/s10072-016-2663-1

    Article  PubMed  Google Scholar 

  44. Akıl E, Bulut A, Kaplan İ, Özdemir HH, Arslan D, Aluçlu MU (2015) The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol Sci 36:423–428. doi:10.1007/s10072-014-1976-1

    Article  PubMed  Google Scholar 

  45. Ataç Uçar C, Gökçe Çokal B, Ünal Artık HA, İnan LE, Yoldaş TK (2017) Comparison of neutrophil–lymphocyte ratio (NLR) in Parkinson’s disease subtypes. Neurol Sci 38:287–293. doi:10.1007/s10072-016-2758-8

    Article  PubMed  Google Scholar 

  46. Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62:803–819. doi:10.1016/j.neuint.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  47. Block ML, Hong J-S (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132. doi:10.1042/BST0351127

    Article  CAS  PubMed  Google Scholar 

  48. Garcia-Esparcia P, Llorens F, Carmona M, Ferrer I (2014) Complex deregulation and expression of cytokines and mediators of the immune response in Parkinson’s disease brain is region dependent. Brain Pathol 24:584–598. doi:10.1111/bpa.12137

    Article  CAS  PubMed  Google Scholar 

  49. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi:10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  50. Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144. doi:10.1016/j.freeradbiomed.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  51. Chen H-H, Liu PF-C, Tsai H-H, Yen R-F, Liou H-H (2016) Re: Wangensteen et al. of a letter on ‘Hepatitis C virus infection: a risk factor for Parkinson’s disease. J Viral Hepat 23:560–560. doi:10.1111/jvh.12521

    Article  PubMed  Google Scholar 

  52. Kim J, Jang ES, Ok K, Oh ES, Kim KJ, Jeon B et al (2016) Association between hepatitis C virus infection and Parkinson’s disease. Mov Disord 31:1584–1585

    Article  PubMed  Google Scholar 

  53. Pakpoor J, Noyce A, Selkihova M, Lees A (2017) Viral hepatitis and Parkinson disease: a national record-linkage study. Neurology 88:1630–1633

    Article  PubMed  Google Scholar 

  54. Munhoz RP, Bertucci Filho D, Teive HAG (2017) Not all drug-induced parkinsonism are the same: the effect of drug class on motor phenotype. Neurol Sci 38:319–324. doi:10.1007/s10072-016-2771-y

    Article  PubMed  Google Scholar 

  55. Ahmed H, Elgebaly A, Abushouk AI, Hammad AM, Attia A, Negida A (2016) Safety and efficacy of sofosbuvir plus ledipasvir with and without ribavirin for chronic HCV genotype-1 infection: a systematic review and meta-analysis. Antivir Ther. doi:10.3851/imp3083

  56. Ahmed H, Abushouk AI, Menshawy A, Attia A, Negida A, Loutfy SA (2017) FRI-224-ribavirin free versus ribavirin containing therapy with all second generation direct acting antivirals for the treatment of hepatitis C virus genotype 1 infection; a pooled analysis of 4501 patients. J Hepatol 66:S508–S509

    Article  Google Scholar 

  57. Bettiol SS, Rose TC, Hughes CJ, Smith LA (2015) Alcohol consumption and Parkinson’s disease risk: a review of recent findings. J Parkinson Dis 5:425–442

    Article  Google Scholar 

  58. Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52:276–284

    Article  PubMed  Google Scholar 

  59. Benito-León J (2017) Viral hepatitis and the risk of Parkinson disease. Neurology 88:1596–1597

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman Ibrahim Abushouk.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding sources

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abushouk, A.I., El-Husseny, M.W.A., Magdy, M. et al. Evidence for association between hepatitis C virus and Parkinson’s disease. Neurol Sci 38, 1913–1920 (2017). https://doi.org/10.1007/s10072-017-3077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3077-4

Keywords

Navigation