Abstract
Cancer is one of the leading causes of death worldwide, with approximately 12.7 million new cases and 7.6 million deaths annually (http://globocan.iarc.fr/factsheets/cancers/all.asp). Conventional cancer therapies, such as chemotherapy, surgery and radiotherapy, have limited efficiency, high toxicity and are often associated with the development of drug resistance. In this context, plants remain an important source of anti-cancer drugs, as exemplified by paclitaxel, vincristine, vinorelbine, teniposide or camptothecin. In effect, 42 % of all approved cancer drugs are natural products or agents derived from natural products and semisynthesis. The anti-malarial artemisinin and its derivatives are new promising anti-cancer compounds. Artemisinin is a potent anti-cancer drug, active on drug- or radiation-resistant cell lines, with virtually no side effects on normal cells. Artemisinin is highly selective in killing cancer cells and has a broad spectrum of action, being effective against many types of cancers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alagbala AA, McRiner AJ, Borstnik K et al (2006) Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 49(26):7836–7842. doi:10.1021/jm060803i
Anfosso L, Efferth T, Albini A et al (2006) Microarray expression profiles of angiogenesis-related genes predicts tumor cell response to artemisinins. Pharmacogenomics J. 6(4):269–278. doi:10.1038/sj.tpj.6500371
Ashton M, Sy ND, van Huong N et al (1998) Artemisinin kinetics and dynamics during oral and rectal treatment of uncomplicated malaria. Clin Pharmacol Ther 63(4):482–493. doi:10.1016/s0009-9236(98)90044-3
Aung W, Sogawa C, Furukawa T et al (2011) Anticancer effect of dihydroartemisinin (DHA) in a pancreatic tumor model evaluated by conventional methods and optical imaging. Anticancer Res 31(5):1549–1558
Bachmeier B, Fichtner I, Killian PH et al (2011) Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells. PLoS ONE 6(5):e20550. doi:10.1371/journal.pone.0020550
Beekman AC, Woerdenbag HJ, Kampinga HH et al (1996) Cytotoxicity of artemisinin, a dimer of dihydroartemisinin, artemisitene and eupatoriopicrin as evaluated by the MTT and clonogenic assay. Phytother Res 10(2):140–144. doi:10.1002/(SICI)1099-1573(199603)10:2<140:AID-PTR792>3.0.CO;2-D
Beekman AC, Barentsen AR, Woerdenbag HJ et al (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–330. doi:10.1021/np9605495
Beekman AC, Wierenga PK, Woerdenbag HJ et al (1998) Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med 64(7):615–619. doi:10.1055/s-2006-957533
Berger TG, Dieckmann D, Efferth T et al (2005) Artesunate in the treatment of metastatic uveal melanoma—first experiences. Oncol Rep 14(6):1599–1603
Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36(3):379–385
Bostwick DG, Alexander EE, Singh R et al (2000) Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89(1):123–134. doi:10.1002/1097-0142(20000701
Buommino E, Baroni A, Canozo N et al (2009) Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase two production. Invest New Drugs 27(5):412–418. doi:10.1007/s10637-008-9188-2
Cabello CM, Lamore SD, Bair WB et al (2012) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30(4):1289–1301. doi:10.1007/s10637-011-9676-7
Chen H, Sun B, Pan SH et al (2009a) Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs 20(2):131–14. doi:10.1097/CAD.0b013e3283212ade
Chen HH, Zhou HJ, Wang WQ et al (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53(5):423–432. doi:10.1007/s00280-003-0751-4
Chen T, Li MA, Zhang RW et al (2009b) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13(7):1358–1370. doi:10.1111/j.1582-4934.2008.00360.x
Cho S, Oh S, Um Y et al (2009) Synthesis of 10-substituted triazolyl artemisinins possessing anticancer activity via Huisgen 1,3-dipolar cylcoaddition. Bioorg Med Chem Lett 19(2):382–385. doi:10.1016/j.bmcl.2008.11.067
Clinical trials (2008) U.S. National Institutes of Health. http://clinicaltrials.gov/show/NCT00764036. Accessed 30 May 2013
Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. doi:10.1155/2012/247597
Current Controlled Trials (2009) ISRCTN Register. http://www.controlled-trials.com/ISRCTN05203252. Accessed on 30 May 2013
Cvijetić IN, Zizak ZP, Stanojković TP et al (2010) An alignment independent 3D QSAR study of the antiproliferative activity of 1,2,4,5-tetraoxanes. Eur J Med Chem 45:4570–4577. doi:10.1016/j.ejmech.2010.07.019
D’Alessandro S, Gelati M, Basilico N et al (2007) Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: implications for embryotoxicity. Toxicology 241:66–74. doi:10.1016/j.tox.2007.08.084
Das UN (2002) A radical approach to cancer. Med Sci Monit 8(4):RA79–RA92
Du JH, Zhang HD, Ma ZJ et al (2010) Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65(5):895–902. doi:10.1007/s00280-009-1095-5
Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Updates 8(1–2):85–97. doi:10.1016/j.drup.2005.04.003
Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7(4):407–421. doi:10.2174/138945006776359412
Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of arternisinin—from bench to bedside. Planta Med 73(4):299–309. doi:10.1055/s-2007-967138
Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol 40(5):405–421. doi:10.3109/10408441003610571
Efferth T, Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol 68(1):3–10. doi:10.1016/j.bcp.2004.03.003
Efferth T, Volm M (2005) Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate. In Vivo 19(1):225–232
Efferth T, Dunstan H, Sauerbrey A et al (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18(4):767–773
Efferth T, Olbrich A, Bauer R (2002) mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol 64(4):617–623. doi:10.1016/S0006-2952(02)01221-2
Efferth T, Briehl MM, Tome ME (2003a) Role of antioxidant genes for the activity of artesunate against tumor cells. Int J Oncol 23(4):1231–1235
Efferth T, Saverbrey A, Olbrich A et al (2003b) Molecular modes of action of artesunate in tumour cell lines. Mol Pharmacol 64(2):382–394
Efferth T, Benakis A, Romero MR et al (2004) Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radical Biol Med 37(7):998–1009. doi:10.1016/j.freeradbiomed.2004.06.023
Efferth T, Glaisi M, Merling A et al (2007) Artesunate induces ROS-mediated apoptosis in Doxorubicin-resistant T leukemia cells. PLoS ONE 2(8):e693. doi:10.1371/journal.pone.0000693
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4): 495–516
Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med doi. doi:10.1017/S1462399409001239
Gachet Y, Tournier S, Lee M et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. 112:1257–1271
Galal AM, Ross SA, ElSohly MA et al (2002) Deoxyartemisinin derivatives from photooxygenation of anhydrodeoxydihydroartemisinin and their cytotoxic evaluation. J Nat Prod 65(2):184–188. doi:10.1021/np0104065
Galal AM, Gul W, Slade D et al (2009) Synthesis and evaluation of dihydroartemisinin and dihydroartemisitene acetal dimers showing anticancer and antiprotozoal activity. Bioorg Med Chem 17(2):741–751. doi:10.1016/j.bmc.2008.11.050
GLOBOCAN (2008) International Agency for Research on Cancer. http://globocan.iarc.fr/factsheets/cancers/all.asp. Accessed 28 May 2013
Gomme PT, McCann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10:267–273. doi:10.1016/S1359-6446(04)03333-1
Gong XM, Zhang Q, Torossian A et al (2012) Selective radiosensitization of human cervical cancer cells and normal cells by artemisinin through the abrogation of radiation-induced G2 block. Int J Gynecol Cancer 22(5):718–724. doi:10.1097/IGC.0b013e31824a67c9
Gong YM, Gallis BM, Goodlett DR et al (2013) Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res 33(1):123–132
Gravett AM, Liu WM, Krishna S et al (2011) In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 67(3):569–577. doi:10.1007/s00280-010-1355-4
Hamacher-Brady A, Stein HA, Turschner S et al (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem 286(8):6587–6601. doi:10.1074/jbc.M110.210047
Haynes RK (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6(5):509–537. doi:10.2174/156802606776743129
He Q, Shi JX, Shen XL et al (2010) Dihydroartemisinin upregulates death receptor five expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9(10):819–824
He R, Mott BT, Rosenthal AS et al (2011a) An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. Plos One 6(8) doi:10.1371/journal.pone.0024334
He Y, Fan J, Lin H et al (2011b) The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1alpha in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 31:53–60. doi:10.1007/s00296-009-1218-7
Horwedel C, Tsogoeva SB, Wei S et al (2010) Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem 53:4842–4848. doi:10.1021/jm100404t
Hou JM, Wang DS, Zhang RW et al (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14(17):5519–5530. doi:10.1158/1078-0432.CCR-08-0197
Hou LF, He SJ, Li X et al (2012) SM934 Treated Lupus-Prone NZB×NZW F(1) mice by enhancing macrophage Interleukin-10 production and suppressing pathogenic T cell development. PLoS ONE 7:e32424
Huang XJ, Ma ZQ, Zhang WP et al (2007) Dihydroartemisinin exerts cytotoxic effects and inhibits hypoxia inducible factor-1 alpha activation in C6 glioma cells. J Pharm Pharmacol 59(6):849–856. doi:10.1211/jpp.59.6.0011
Huang XJ, Li CT, Zhang WP et al (2008) Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells. Pharmacology 82(1):1–9. doi:10.1159/000125673
Hwang YP, Yun HJ, Kim HG et al (2010) Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKC alpha/Raf/MAPKs and NF-kappa B/AP-1-dependent mechanisms. Biochem Pharmacol 79(12):1714–1726. doi:10.1016/j.bcp.2010.02.003
Isacchi B, Arrigucci S, la Marca G et al (2011) Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res 21(3):237–244. doi:10.3109/08982104.2010.539185
Jansen FH, Adoubi I, Comoe JCK et al (2011) First study of oral artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res 31(12):4417–4422
Jefford CW (2007) New developments in synthetic peroxidic drugs as artemisinin mimics. Drug Discov Today 12:487–495. doi:10.1016/j.drudis.2007.04.009
Jeyadevan JP, Bray PG, Chadwick J et al (2004) Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10 beta-(2-hydroxyethyl)deoxoartemisinin. J Med Chem 47(5):1290–1298. doi:10.1021/jm030974c
Ji Y, Zhang YC, Pei LB et al (2011) Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem 351(1–2):99–108. doi:10.1007/s11010-011-0716-6
Jiao Y, Ge CM, Meng QH et al (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056. doi:10.1111/j.1745-8254.2007.00612.x
Jung M, Li X, Bustos DA, elSohly HN et al (1990) Synthesis and antimalarial activity of (+)-deoxoartemisinin. J Med Chem 33:1516–1518. doi:10.1021/jm00167a036
Jung M, Lee S, Ham J et al (2003) Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. J Med Chem 46(6):987–994. doi:10.1021/jm020119d
Jung M, Tak J, Chung WY et al (2006) Antiangiogenic activity of deoxoartemisinin derivatives on chorioallantoic membrane. Bioorg Med Chem Lett 16(5):1227–1230. doi:10.1016/j.bmcl.2005.11.074
Jung M, Park N, Moon HI et al (2009) Synthesis and anticancer activity of novel amide derivatives of non-acetal deoxoartemisinin. Bioorg Med Chem Lett 19(22):6303–6306. doi:10.1016/j.bmcl.2009.09.093
Karnak D, Xu L (2010) Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 11(6):699–707
Kim SJ, Kim MS, Lee JW et al (2006) Dihydroartemisinin enhances radiosensitivity of human glioma cells in vitro. J Cancer Res Clin Oncol 132(2):129–135. doi:10.1007/s00432-005-0052-x
Kumar N, Khan SI, Atheaya H et al (2011) Synthesis and in vitro antimalarial activity of tetraoxane-amine/amide conjugates. Eur J Med Chem 46(7):2816–2827. doi:10.1016/j.ejmech.2011.04.002
Kumura N, Furukawa H, Onyango AN et al (2009) Different behavior of artemisinin and tetraoxane in the oxidative degradation of phospholipid. Chem Phys Lipids 160:114–120. doi:10.1016/j.chemphyslip.2009.04.005
Lai H, Singh NP (1995) Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 91(1):41–46. doi:10.1016/0304-3835(94)03716-V
Lai H, Sasaki T, Singh NP et al (2005a) Effects of artemisinin-tagged holotransferrin on cancer cells. Life Sci 76(11):1267–1279. doi:10.1016/j.lfs.2004.08.020
Lai H, Sasaki T, Singh NP (2005b) Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin Ther Targets 9(5):995–1007. doi:10.1517/14728222.9.5.995
Lai H, Nakase I, Lacoste E et al (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29(10):3807–3810
Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246. doi:10.1007/s10637-012-9873-z
Langroudi L, Hassan ZM, Ebtekar M (2010) A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol 10:1055–1061. doi:10.1016/j.intimp.2010.06.005
Lee CH, Hong HD, Shin J et al (2000) NMR studies on novel antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin. Biochem Biophys Res Commun 274(2):359–369. doi:10.1006/bbrc.2000.3086
Lee JH, Engler JA, Collawn JF et al (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012
Lee IS, Ryu DK, Lim J et al (2012) Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neurosci Lett 509:17–21. doi:10.1016/j.neulet.2011.12.034
Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22:225–250
Li Q, Weina PJ, Milhous WK (2007) Pharmacokinetic and pharmacodynamic profiles of rapid-acting artemisinins in the antimalarial therapy. Curr Drug Ther 2(3):210–223. doi:10.2174/157488507781695649
Li PCH, Lam E, Roos WP et al (2008) Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res 68(11):4347–4351. doi:10.1158/0008-5472.CAN-07-2970
Li S, Xue F, Cheng Z et al (2009) Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFκB p65. Int J Hematol 90(4):513–521
Li T, Chen H, Wei N et al (2012) Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol 12:144–150. doi:10.1016/j.intimp.2011.11.004
Lijuan W (2010) Effect of artesunate on human endometrial carcinoma. J Med Coll PLA 25(3):143–151. doi:10.1016/S1000-1948(10)60033-0
Liu WM, Gravett AM, Dalgleish AG (2011) The antimalarial agent artesunate possesses anticancer properties that can be enhanced by combination strategies. Int J Cancer 128(6):1471–1480. doi:10.1002/ijc.25707
Lu YY, Chen TS, Qu JL et al (2009) Dihydroartemisinin (DHA) induces caspase-three-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci. doi:10.1186/1423-0127-16-16
Lu JJ, Meng LH, Shankavaram UT et al (2010a) Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem Pharmacol 80(1):22–30. doi:10.1016/j.bcp.2010.02.016
Lu YY, Chen TS, Wang XP et al (2010b) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques. J Biomed Opt doi: 10.1117/1.3481141
Lu JJ, Chen SM, Zhang XW et al (2011) The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drugs 29(6):1276–1283. doi:10.1007/s10637-010-9481-8
Mason AB, Miller MK, Funk WD et al (1993) Expression of glycosylated and nonglycosylated human transferrin in mammalian cells. Characterization of the recombinant proteins with comparison to three commercially available transferrins. Biochemistry 32:5472–5479. doi:10.1021/bi00071a025
McLean W, Ward SA (1998) In vitro neurotoxicity of artemisinin derivatives. Médecine Tropicale 58(3):28–31
Mercer AE, Copple IM, Maggs JL et al (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the Artemisinin Antimalarials. J Biol Chem 286(2):987–996. doi:10.1074/jbc.M110.144188
Mercer AE, Maggs JL, Sun XM et al (2007) Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem 282(13):9372–9382
Michaelis M, Kleinschmidt MC, Barth S et al (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79(2):130–136. doi:10.1016/j.bcp.2009.08.013
Miller MJ, Walz AJ, Zhu H et al (2011) Design, synthesis and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 133:2076–2079. doi:10.1021/ja109665t
Moore JC, Lai H, Li JR et al (1995) Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett 98(1):83–87. doi:10.1016/S0304-3835(06)80014-5
Morrissey C, Gallis B, Solazzi JW et al (2010) Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anticancer Drugs 21(4):423–432. doi:10.1097/CAD.0b013e328336f57b
Mu D, Chen W, Yu B et al (2007) Calcium and survivin are involved in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells. In: Methods and findings in experimental and clinical pharmacology, 29(1):33–38. doi:10.1358/mf.2007.29.1.1063493
Mu DG, Zhang W, Chu DL et al (2008) The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells. Cancer Chemother Pharmacol 61(4):639–645. doi:10.1007/s00280-007-0517-5
Nakase I, Lai H, Singh NP et al (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354(1–2):28–33. doi:10.1016/j.ijpharm.2007.09.003
Nakase I, Gallis B, Takatani-Nakase T et al (2009) Title: Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274(2):290–298. doi:10.1016/j.canlet.2008.09.023
Nam W, Tak J, Ryu JK et al (2007) Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 29(4):335–340. doi:10.1002/hed.20524
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v
Noori S, Hassan ZM (2011) Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol 271:67–72. doi:10.1016/j.cellimm.2011.06.008
Noori S, Hassan ZM (2012) Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radical Biol Med 52(9):1987–1999. doi:10.1016/j.freeradbiomed.2012.01.026
Noori S, Naderi GA, Hassan ZM et al (2004) Immunosuppressive activity of a molecule isolated from Artemisia annua on DTH responses compared with cyclosporin A. Int Immunopharmacol 4:1301–1306
Noori S, Taghikhani M, Hassan ZM et al (2009) Tehranolide could shift the immune response towards Th1 and modulate the intra-tumor infiltrated T regulatory cells. Iran J Immunol 6:216–224. doi:IJIv6i4A7
Noori S, Hassan ZM, Taghikhani M et al (2010a) Dihydroartemisinin can inhibit calmodulin, calmodulin-dependent phosphodiesterase activity and stimulate cellular immune responses. Int Immunopharmacol 10(2):213–217. doi:10.1016/j.intimp.2009.11.002
Noori S, Taghikhani M, Hassan ZM et al (2010b) Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol Immunol 47(7–8):1579–1584. doi:10.1016/j.molimm.2010.01.007
Oh S, Jeong IH, Ahn CM et al (2004) Synthesis and antiangiogenic activity of thioacetal artemisinin derivatives. Bioorg Med Chem 12:3783–3790. doi:10.1016/j.bmc.2004.05.013
Oh S, Kim BJ, Singh NP et al (2009) Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Letters 274(1):33–39. doi:10.1016/j.canlet.2008.08.03l
Ohgami Y, Elstad CA, Chung E et al (2010) Effect of hyperbaric oxygen on the anticancer effect of Artemisinin on Molt-4 human leukemia cells. Anticancer Res 30(11):4467–4470
O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of Artemisinin-the debate continues. Molecules 15(3):1705–1721. doi:10.3390/molecules15031705
Opsenica D, Kyle DE, Milhous WK et al (2003) Antimalarial, antimycobacterial and antiproliferative activity of phenyl substituted mixed tetraoxanes. J Serb Chem Soc 68(4–5):291–302. doi:10.2298/JSC0305291O
Opsenica I, Opsenica D, Smith KS (2008) Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J Med Chem 51:2261–2266. doi:10.1021/jm701417a
Paik IH, Xie SJ, Shapiro TA et al (2006) Second generation, orally active, antimalarial, artemisinin-derived trioxane dimers with high stability, efficacy, and anticancer activity. J Med Chem 49(9):2731–2734. doi:10.1021/jm058288w
Panossian LA, Garga NI, Pelletier I (2005) Toxic brainstem encephalopathy after artemisinin treatment for breast cancer. Ann Neurol 58(5):812–813. doi:10.1002/ana.20815
Posner GH, Northrop J, Paik IH et al (2002) New chemical and biological aspects of artemisinin-derived trioxane dimers. Bioorg Med Chem 10(1):227–232. doi:10.1016/S0968-0896(01)00270-X
Posner GH, McRiner AJ, Paik IH et al (2004) Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J Med Chem 47(5):1299–1301. doi:10.1021/jm0303711
Qian ZM, Li H, Sun H et al (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587
Rasheed SAK, Efferth T, Asangani IA et al (2010) First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 127(6):1475–1485. doi:10.1002/ijc.25315
Reichert S, Reinboldt V, Hehlgans S et al (2012) A radiosensitizing effect of artesunate in glioblastoma cells is associated with a diminished expression of the inhibitor of apoptosis protein survivin. Radiother Oncol 103(3):394–401. doi:10.1016/j.radonc.2012.03.018
Reiter C, Herrmann A, Capci A et al (2012) New artesunic acid homodimers: potent reversal agents of multidrug resistance in leukemia cells. Bioorg Med Chem 20(18):5637–5641. doi:10.1016/j.bmc.2012.07.015
Reizenstein P (1991) Iron, free radicals and cancer. Med Oncol Tumor Phar 8(4):229–233
Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25(12):1555–1561. doi:10.1248/bpb.25.1555
Rezaei B, Majidi N, Noori S et al (2011) Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells. J Nanopart Res 13(12):6339–6346. doi:10.1007/s11051-011-0376-1
Ricci J, Park J, Chung WY et al (2010) Concise synthesis and antiangiogenic activity of artemisinin-glycolipid hybrids on chorioallantoic membranes. Bioorg Med Chem Lett 20:6858–6860. doi:10.1016/j.bmcl.2010.08.013
Ricci J, Kim M, Chung WY et al (2011) Discovery of Artemisinin-Glycolipid hybrids as anti-oral cancer agents. Chem Pharm Bull 59(12):1471–1475
Riganti C, Doublier S, Viarisio D et al (2009) Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1 alpha and P-glycoprotein overexpression. Br J Pharmacol 156(7):1054–1066. doi:10.1111/j.1476-5381.2009.00117.x
Righeschi C, Isacchi B, Bergonzi M et al (2011) Conventional, stealth and transferrin-conjugated liposomes for artemisinin delivery to cancer cells. Planta Med 77(12):1261. doi:10.1055/s-0031-1282193
Schmuck G, Roehrdanz E, Haynes RK et al (2002) Neurotoxic mode of action of artemisinin. Antimicrob Agents Chemother 46(3):821–827. doi:10.1128/AAC.46.3.821-827.2002
Schmuck G, Klaus AM, Krötlinger F et al (2009) Developmental and reproductive toxicity studies on artemisone. Birth Defects Res B Dev Reprod Toxicol 86:131–143. doi:10.1002/bdrb.20192
Singh NP, Lai HC (2005) Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res 25:4325–4331
Singh NP, Panwar VK (2006) Case report of a pituitary macroadenoma treated with artemether. Integr Cancer Ther 5(4):391–394. doi:10.1177/1534735406295311
Singh NP, Verma KB (2002) Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch Oncol 10(4):279–280. doi:10.2298/AOO0204279S
Singh NP, Lai HC, Park JS et al (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31(12):4111–4114
Slade D, Galal AM, Gul W et al (2009) Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorg Med Chem 17:7949–7957. doi:10.1016/j.bmc.2009.10.019
Stockwin LH, Han BN, Yu SX et al (2009) Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int J Cancer 125(6):1266–1275. doi:10.1002/ijc.24496
Terzic N, Opsenica D, Milic D et al (2007) Deoxycholic acid-derived tetraoxane antimalarials and antiproliferatives. J Med Chem 50(21):5118–5127. doi:10.1021/jm070684m
Thanaketpaisarn O, Waiwut P, Sakurai H et al (2011) Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-kappa B and PI3 K/Akt signaling pathways. Int J Oncol 39(1):279–285. doi:10.3892/ijo.2011.1017
Uhlemann AC, Cameron A, Eckstein-Ludwig U et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinin. Nat Struct Mol Biol 12:628–629. doi:10.1038/nsmb947
Vennerstrom JL, Dong Y, Andersen SL, Ager AL Jr et al (2000) Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5- tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5. 2] hexadecanes. J Med Chem 43:2753–2758
Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799. doi:10.1038/nm1087
Wang J, Zhang BC, Guo Y et al (2008a) Artemisinin inhibits tumor lymphangiogenesis by suppression of vascular endothelial growth factor C. Pharmacology 82(2):148–155. doi:10.1159/000148261
Wang JX, Tang W, Zhou R et al (2008b) The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. Br J Pharmacol 153:1303–1310. doi:10.1038/bjp.2008.11
Wang SJ, Gao Y, Chen H et al (2010) Dihydroartemisinin inactivates NF-kappa B and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293(1):99–108. doi:10.1016/j.canlet.2010.01.001
Wang SJ, Sun B, Cheng ZX et al (2011a) Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-kappa B pathway. Cancer Chemother Pharmacol 68(6):1421–1430. doi:10.1007/s00280-011-1643-7
Wang Y, Huang ZQ, Wang CQ et al (2011b) Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase C delta/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin Exp Pharmacol Physiol 38(1):11–18. doi:10.1111/j.1440-1681.2010.05454.x
Wang ZH, Yu Y, Ma J et al (2012) LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharmaceutics 9(9):2646–2657. doi:10.1021/mp3002107
Weifeng T, Feng S, Xiangji L et al (2011) Artemisinin inhibits In vitro and In vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18(2–3):158–162. doi:10.1016/j.phymed.2010.07.003
Woerdenbag HJ, Moskal TA, Pras N et al (1993) Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56(6):849–856. doi:10.1021/np50096a007
Wu J, Hu D, Yang G et al (2011) Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J Cell Biochem 112(7):1938–1948. doi:10.1002/jcb.23114
Xie L, Zhai X, Liu C et al (2011a) Anti-tumor activity of new artemisinin-chalcone hybrids. Arch Pharm (Weinheim). 344(10):639–647. doi:10.1002/ardp.201000391
Xie LJ, Zhao YF, Zhai X et al (2011b) The Application of tandem aza-wittig reaction to synthesize artemisinin-guanidine hybrids and their anti-tumor activity. Arch Pharm 344(10):631–638. doi:10.1002/ardp.201000363
Xie WL, Yang PH, Zeng X et al (2009) Effect of 4-(12-dihydroartemisininoxy) benzoic acid hydrazide transferrin tagged drug on human breast cancer cells. Chin J Anal Chem 37(5):671–675
Xie WL, Yang PH, Zeng X et al (2010) Visual characterization of targeted effect of holo-transferrin-tagged dihydroartemisinin on human breast cancer cells. Chin Sci Bull 55(22):2390–2395. doi:10.1007/s11434-010-3284-3
Xu H, He Y, Yang X et al (2007) Anti-malarial agent artesunate inhibits TNF-{alpha} induced production of proinflammatory cytokines via inhibition of NF-{kappa}B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatol 46:920–926. doi:10.1093/rheumatology/kem014
Xu Q, Li ZX, Peng HQ et al (2011) Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line In vitro and In vivo. Biomed Biotechnol 12(4):247–255. doi:10.1631/jzus.B1000373
Yang X, Wang W, Tan J et al (2009) Synthesis of a series of novel dihydroartemisinin derivatives containing a substituted chalcone with greater cytotoxic effects in leukemia cells. Bioorg Med Chem Lett 19:4385–4388. doi:10.1016/j.bmcl.2009.05.076
Youns M, Efferth T, Reichling J et al (2009) Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochem Pharmacol 78(3):273–283. doi:10.1016/j.bcp.2009.04.014
Zeng QP, Zhang PZ (2011) Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. Nitric Oxide 24(2):110–112. doi:10.1016/j.niox.2010.12.005
Zhao YY, Jiang WW, Li B et al (2011) Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G(2)/M phase. Int Immunopharmacol 11(12):2039–2046. doi:10.1016/j.intimp.2011.08.017
Zhang ZY, Yu SQ, Miao LY et al (2008) Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Zhongxiyi Jiehe Xuebao 6:134–138. doi:10.1016/j.bmcl.2009.05.076
Zhang SM, Gerhard GS (2009) Heme Mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. Plos One e7472. doi:10.1371/journal.pone.0007472
Zhou HJ, Wang WQ, Wu GD (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vasc Pharmacol 47(2–3):131–138. doi:10.1016/j.vph.2007.05.002
Zhou HJ, Wang Z, Li A (2008) Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs 19(3):247–255. doi:10.1097/CAD.0b013e3282f3f152
Zhou HJ, Zhang JL, Li A et al (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother Pharmacol 66(1):21–29. doi:10.1007/s00280-009-1129-z
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ivanescu, B., Corciova, A. (2014). Artemisinin in Cancer Therapy. In: Aftab, T., Ferreira, J., Khan, M., Naeem, M. (eds) Artemisia annua - Pharmacology and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41027-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-41027-7_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41026-0
Online ISBN: 978-3-642-41027-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)