Skip to main content

Artemisinin in Cancer Therapy

  • Chapter
  • First Online:
Artemisia annua - Pharmacology and Biotechnology

Abstract

Cancer is one of the leading causes of death worldwide, with approximately 12.7 million new cases and 7.6 million deaths annually (http://globocan.iarc.fr/factsheets/cancers/all.asp). Conventional cancer therapies, such as chemotherapy, surgery and radiotherapy, have limited efficiency, high toxicity and are often associated with the development of drug resistance. In this context, plants remain an important source of anti-cancer drugs, as exemplified by paclitaxel, vincristine, vinorelbine, teniposide or camptothecin. In effect, 42 % of all approved cancer drugs are natural products or agents derived from natural products and semisynthesis. The anti-malarial artemisinin and its derivatives are new promising anti-cancer compounds. Artemisinin is a potent anti-cancer drug, active on drug- or radiation-resistant cell lines, with virtually no side effects on normal cells. Artemisinin is highly selective in killing cancer cells and has a broad spectrum of action, being effective against many types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alagbala AA, McRiner AJ, Borstnik K et al (2006) Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 49(26):7836–7842. doi:10.1021/jm060803i

    PubMed  CAS  Google Scholar 

  • Anfosso L, Efferth T, Albini A et al (2006) Microarray expression profiles of angiogenesis-related genes predicts tumor cell response to artemisinins. Pharmacogenomics J. 6(4):269–278. doi:10.1038/sj.tpj.6500371

    PubMed  CAS  Google Scholar 

  • Ashton M, Sy ND, van Huong N et al (1998) Artemisinin kinetics and dynamics during oral and rectal treatment of uncomplicated malaria. Clin Pharmacol Ther 63(4):482–493. doi:10.1016/s0009-9236(98)90044-3

    PubMed  CAS  Google Scholar 

  • Aung W, Sogawa C, Furukawa T et al (2011) Anticancer effect of dihydroartemisinin (DHA) in a pancreatic tumor model evaluated by conventional methods and optical imaging. Anticancer Res 31(5):1549–1558

    PubMed  CAS  Google Scholar 

  • Bachmeier B, Fichtner I, Killian PH et al (2011) Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells. PLoS ONE 6(5):e20550. doi:10.1371/journal.pone.0020550

    PubMed  CAS  Google Scholar 

  • Beekman AC, Woerdenbag HJ, Kampinga HH et al (1996) Cytotoxicity of artemisinin, a dimer of dihydroartemisinin, artemisitene and eupatoriopicrin as evaluated by the MTT and clonogenic assay. Phytother Res 10(2):140–144. doi:10.1002/(SICI)1099-1573(199603)10:2<140:AID-PTR792>3.0.CO;2-D

    CAS  Google Scholar 

  • Beekman AC, Barentsen AR, Woerdenbag HJ et al (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–330. doi:10.1021/np9605495

    PubMed  CAS  Google Scholar 

  • Beekman AC, Wierenga PK, Woerdenbag HJ et al (1998) Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med 64(7):615–619. doi:10.1055/s-2006-957533

    PubMed  CAS  Google Scholar 

  • Berger TG, Dieckmann D, Efferth T et al (2005) Artesunate in the treatment of metastatic uveal melanoma—first experiences. Oncol Rep 14(6):1599–1603

    PubMed  CAS  Google Scholar 

  • Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36(3):379–385

    PubMed  CAS  Google Scholar 

  • Bostwick DG, Alexander EE, Singh R et al (2000) Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89(1):123–134. doi:10.1002/1097-0142(20000701

    PubMed  CAS  Google Scholar 

  • Buommino E, Baroni A, Canozo N et al (2009) Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase two production. Invest New Drugs 27(5):412–418. doi:10.1007/s10637-008-9188-2

    PubMed  CAS  Google Scholar 

  • Cabello CM, Lamore SD, Bair WB et al (2012) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30(4):1289–1301. doi:10.1007/s10637-011-9676-7

    PubMed  CAS  Google Scholar 

  • Chen H, Sun B, Pan SH et al (2009a) Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs 20(2):131–14. doi:10.1097/CAD.0b013e3283212ade

    PubMed  Google Scholar 

  • Chen HH, Zhou HJ, Wang WQ et al (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53(5):423–432. doi:10.1007/s00280-003-0751-4

    PubMed  CAS  Google Scholar 

  • Chen T, Li MA, Zhang RW et al (2009b) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13(7):1358–1370. doi:10.1111/j.1582-4934.2008.00360.x

    PubMed  CAS  Google Scholar 

  • Cho S, Oh S, Um Y et al (2009) Synthesis of 10-substituted triazolyl artemisinins possessing anticancer activity via Huisgen 1,3-dipolar cylcoaddition. Bioorg Med Chem Lett 19(2):382–385. doi:10.1016/j.bmcl.2008.11.067

    PubMed  CAS  Google Scholar 

  • Clinical trials (2008) U.S. National Institutes of Health. http://clinicaltrials.gov/show/NCT00764036. Accessed 30 May 2013

  • Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. doi:10.1155/2012/247597

    PubMed  Google Scholar 

  • Current Controlled Trials (2009) ISRCTN Register. http://www.controlled-trials.com/ISRCTN05203252. Accessed on 30 May 2013

  • Cvijetić IN, Zizak ZP, Stanojković TP et al (2010) An alignment independent 3D QSAR study of the antiproliferative activity of 1,2,4,5-tetraoxanes. Eur J Med Chem 45:4570–4577. doi:10.1016/j.ejmech.2010.07.019

    PubMed  Google Scholar 

  • D’Alessandro S, Gelati M, Basilico N et al (2007) Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: implications for embryotoxicity. Toxicology 241:66–74. doi:10.1016/j.tox.2007.08.084

    PubMed  Google Scholar 

  • Das UN (2002) A radical approach to cancer. Med Sci Monit 8(4):RA79–RA92

    Google Scholar 

  • Du JH, Zhang HD, Ma ZJ et al (2010) Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65(5):895–902. doi:10.1007/s00280-009-1095-5

    PubMed  CAS  Google Scholar 

  • Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Updates 8(1–2):85–97. doi:10.1016/j.drup.2005.04.003

    CAS  Google Scholar 

  • Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7(4):407–421. doi:10.2174/138945006776359412

    PubMed  CAS  Google Scholar 

  • Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of arternisinin—from bench to bedside. Planta Med 73(4):299–309. doi:10.1055/s-2007-967138

    PubMed  CAS  Google Scholar 

  • Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol 40(5):405–421. doi:10.3109/10408441003610571

    PubMed  CAS  Google Scholar 

  • Efferth T, Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol 68(1):3–10. doi:10.1016/j.bcp.2004.03.003

    PubMed  CAS  Google Scholar 

  • Efferth T, Volm M (2005) Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate. In Vivo 19(1):225–232

    PubMed  CAS  Google Scholar 

  • Efferth T, Dunstan H, Sauerbrey A et al (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18(4):767–773

    PubMed  CAS  Google Scholar 

  • Efferth T, Olbrich A, Bauer R (2002) mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol 64(4):617–623. doi:10.1016/S0006-2952(02)01221-2

    PubMed  CAS  Google Scholar 

  • Efferth T, Briehl MM, Tome ME (2003a) Role of antioxidant genes for the activity of artesunate against tumor cells. Int J Oncol 23(4):1231–1235

    PubMed  CAS  Google Scholar 

  • Efferth T, Saverbrey A, Olbrich A et al (2003b) Molecular modes of action of artesunate in tumour cell lines. Mol Pharmacol 64(2):382–394

    PubMed  CAS  Google Scholar 

  • Efferth T, Benakis A, Romero MR et al (2004) Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radical Biol Med 37(7):998–1009. doi:10.1016/j.freeradbiomed.2004.06.023

    CAS  Google Scholar 

  • Efferth T, Glaisi M, Merling A et al (2007) Artesunate induces ROS-mediated apoptosis in Doxorubicin-resistant T leukemia cells. PLoS ONE 2(8):e693. doi:10.1371/journal.pone.0000693

    PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4): 495–516

    Google Scholar 

  • Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med doi. doi:10.1017/S1462399409001239

    Google Scholar 

  • Gachet Y, Tournier S, Lee M et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. 112:1257–1271

    Google Scholar 

  • Galal AM, Ross SA, ElSohly MA et al (2002) Deoxyartemisinin derivatives from photooxygenation of anhydrodeoxydihydroartemisinin and their cytotoxic evaluation. J Nat Prod 65(2):184–188. doi:10.1021/np0104065

    PubMed  CAS  Google Scholar 

  • Galal AM, Gul W, Slade D et al (2009) Synthesis and evaluation of dihydroartemisinin and dihydroartemisitene acetal dimers showing anticancer and antiprotozoal activity. Bioorg Med Chem 17(2):741–751. doi:10.1016/j.bmc.2008.11.050

    PubMed  CAS  Google Scholar 

  • GLOBOCAN (2008) International Agency for Research on Cancer. http://globocan.iarc.fr/factsheets/cancers/all.asp. Accessed 28 May 2013

  • Gomme PT, McCann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10:267–273. doi:10.1016/S1359-6446(04)03333-1

    PubMed  CAS  Google Scholar 

  • Gong XM, Zhang Q, Torossian A et al (2012) Selective radiosensitization of human cervical cancer cells and normal cells by artemisinin through the abrogation of radiation-induced G2 block. Int J Gynecol Cancer 22(5):718–724. doi:10.1097/IGC.0b013e31824a67c9

    PubMed  Google Scholar 

  • Gong YM, Gallis BM, Goodlett DR et al (2013) Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res 33(1):123–132

    PubMed  CAS  Google Scholar 

  • Gravett AM, Liu WM, Krishna S et al (2011) In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 67(3):569–577. doi:10.1007/s00280-010-1355-4

    PubMed  CAS  Google Scholar 

  • Hamacher-Brady A, Stein HA, Turschner S et al (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem 286(8):6587–6601. doi:10.1074/jbc.M110.210047

    PubMed  CAS  Google Scholar 

  • Haynes RK (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6(5):509–537. doi:10.2174/156802606776743129

    PubMed  CAS  Google Scholar 

  • He Q, Shi JX, Shen XL et al (2010) Dihydroartemisinin upregulates death receptor five expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9(10):819–824

    PubMed  CAS  Google Scholar 

  • He R, Mott BT, Rosenthal AS et al (2011a) An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. Plos One 6(8) doi:10.1371/journal.pone.0024334

  • He Y, Fan J, Lin H et al (2011b) The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1alpha in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 31:53–60. doi:10.1007/s00296-009-1218-7

    PubMed  CAS  Google Scholar 

  • Horwedel C, Tsogoeva SB, Wei S et al (2010) Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem 53:4842–4848. doi:10.1021/jm100404t

    PubMed  CAS  Google Scholar 

  • Hou JM, Wang DS, Zhang RW et al (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14(17):5519–5530. doi:10.1158/1078-0432.CCR-08-0197

    PubMed  CAS  Google Scholar 

  • Hou LF, He SJ, Li X et al (2012) SM934 Treated Lupus-Prone NZB×NZW F(1) mice by enhancing macrophage Interleukin-10 production and suppressing pathogenic T cell development. PLoS ONE 7:e32424

    PubMed  CAS  Google Scholar 

  • Huang XJ, Ma ZQ, Zhang WP et al (2007) Dihydroartemisinin exerts cytotoxic effects and inhibits hypoxia inducible factor-1 alpha activation in C6 glioma cells. J Pharm Pharmacol 59(6):849–856. doi:10.1211/jpp.59.6.0011

    PubMed  CAS  Google Scholar 

  • Huang XJ, Li CT, Zhang WP et al (2008) Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells. Pharmacology 82(1):1–9. doi:10.1159/000125673

    PubMed  CAS  Google Scholar 

  • Hwang YP, Yun HJ, Kim HG et al (2010) Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKC alpha/Raf/MAPKs and NF-kappa B/AP-1-dependent mechanisms. Biochem Pharmacol 79(12):1714–1726. doi:10.1016/j.bcp.2010.02.003

    PubMed  CAS  Google Scholar 

  • Isacchi B, Arrigucci S, la Marca G et al (2011) Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res 21(3):237–244. doi:10.3109/08982104.2010.539185

    PubMed  CAS  Google Scholar 

  • Jansen FH, Adoubi I, Comoe JCK et al (2011) First study of oral artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res 31(12):4417–4422

    PubMed  CAS  Google Scholar 

  • Jefford CW (2007) New developments in synthetic peroxidic drugs as artemisinin mimics. Drug Discov Today 12:487–495. doi:10.1016/j.drudis.2007.04.009

    PubMed  CAS  Google Scholar 

  • Jeyadevan JP, Bray PG, Chadwick J et al (2004) Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10 beta-(2-hydroxyethyl)deoxoartemisinin. J Med Chem 47(5):1290–1298. doi:10.1021/jm030974c

    PubMed  CAS  Google Scholar 

  • Ji Y, Zhang YC, Pei LB et al (2011) Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem 351(1–2):99–108. doi:10.1007/s11010-011-0716-6

    PubMed  CAS  Google Scholar 

  • Jiao Y, Ge CM, Meng QH et al (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056. doi:10.1111/j.1745-8254.2007.00612.x

    PubMed  CAS  Google Scholar 

  • Jung M, Li X, Bustos DA, elSohly HN et al (1990) Synthesis and antimalarial activity of (+)-deoxoartemisinin. J Med Chem 33:1516–1518. doi:10.1021/jm00167a036

    PubMed  CAS  Google Scholar 

  • Jung M, Lee S, Ham J et al (2003) Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. J Med Chem 46(6):987–994. doi:10.1021/jm020119d

    PubMed  CAS  Google Scholar 

  • Jung M, Tak J, Chung WY et al (2006) Antiangiogenic activity of deoxoartemisinin derivatives on chorioallantoic membrane. Bioorg Med Chem Lett 16(5):1227–1230. doi:10.1016/j.bmcl.2005.11.074

    PubMed  CAS  Google Scholar 

  • Jung M, Park N, Moon HI et al (2009) Synthesis and anticancer activity of novel amide derivatives of non-acetal deoxoartemisinin. Bioorg Med Chem Lett 19(22):6303–6306. doi:10.1016/j.bmcl.2009.09.093

    PubMed  CAS  Google Scholar 

  • Karnak D, Xu L (2010) Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 11(6):699–707

    PubMed  CAS  Google Scholar 

  • Kim SJ, Kim MS, Lee JW et al (2006) Dihydroartemisinin enhances radiosensitivity of human glioma cells in vitro. J Cancer Res Clin Oncol 132(2):129–135. doi:10.1007/s00432-005-0052-x

    PubMed  CAS  Google Scholar 

  • Kumar N, Khan SI, Atheaya H et al (2011) Synthesis and in vitro antimalarial activity of tetraoxane-amine/amide conjugates. Eur J Med Chem 46(7):2816–2827. doi:10.1016/j.ejmech.2011.04.002

    PubMed  CAS  Google Scholar 

  • Kumura N, Furukawa H, Onyango AN et al (2009) Different behavior of artemisinin and tetraoxane in the oxidative degradation of phospholipid. Chem Phys Lipids 160:114–120. doi:10.1016/j.chemphyslip.2009.04.005

    PubMed  CAS  Google Scholar 

  • Lai H, Singh NP (1995) Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 91(1):41–46. doi:10.1016/0304-3835(94)03716-V

    PubMed  CAS  Google Scholar 

  • Lai H, Sasaki T, Singh NP et al (2005a) Effects of artemisinin-tagged holotransferrin on cancer cells. Life Sci 76(11):1267–1279. doi:10.1016/j.lfs.2004.08.020

    PubMed  CAS  Google Scholar 

  • Lai H, Sasaki T, Singh NP (2005b) Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin Ther Targets 9(5):995–1007. doi:10.1517/14728222.9.5.995

    PubMed  CAS  Google Scholar 

  • Lai H, Nakase I, Lacoste E et al (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29(10):3807–3810

    PubMed  CAS  Google Scholar 

  • Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246. doi:10.1007/s10637-012-9873-z

    PubMed  CAS  Google Scholar 

  • Langroudi L, Hassan ZM, Ebtekar M (2010) A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol 10:1055–1061. doi:10.1016/j.intimp.2010.06.005

    PubMed  CAS  Google Scholar 

  • Lee CH, Hong HD, Shin J et al (2000) NMR studies on novel antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin. Biochem Biophys Res Commun 274(2):359–369. doi:10.1006/bbrc.2000.3086

    PubMed  CAS  Google Scholar 

  • Lee JH, Engler JA, Collawn JF et al (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012

    PubMed  CAS  Google Scholar 

  • Lee IS, Ryu DK, Lim J et al (2012) Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neurosci Lett 509:17–21. doi:10.1016/j.neulet.2011.12.034

    PubMed  CAS  Google Scholar 

  • Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22:225–250

    PubMed  CAS  Google Scholar 

  • Li Q, Weina PJ, Milhous WK (2007) Pharmacokinetic and pharmacodynamic profiles of rapid-acting artemisinins in the antimalarial therapy. Curr Drug Ther 2(3):210–223. doi:10.2174/157488507781695649

    CAS  Google Scholar 

  • Li PCH, Lam E, Roos WP et al (2008) Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res 68(11):4347–4351. doi:10.1158/0008-5472.CAN-07-2970

    PubMed  CAS  Google Scholar 

  • Li S, Xue F, Cheng Z et al (2009) Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFκB p65. Int J Hematol 90(4):513–521

    PubMed  CAS  Google Scholar 

  • Li T, Chen H, Wei N et al (2012) Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol 12:144–150. doi:10.1016/j.intimp.2011.11.004

    PubMed  CAS  Google Scholar 

  • Lijuan W (2010) Effect of artesunate on human endometrial carcinoma. J Med Coll PLA 25(3):143–151. doi:10.1016/S1000-1948(10)60033-0

    Google Scholar 

  • Liu WM, Gravett AM, Dalgleish AG (2011) The antimalarial agent artesunate possesses anticancer properties that can be enhanced by combination strategies. Int J Cancer 128(6):1471–1480. doi:10.1002/ijc.25707

    PubMed  CAS  Google Scholar 

  • Lu YY, Chen TS, Qu JL et al (2009) Dihydroartemisinin (DHA) induces caspase-three-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci. doi:10.1186/1423-0127-16-16

    Google Scholar 

  • Lu JJ, Meng LH, Shankavaram UT et al (2010a) Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem Pharmacol 80(1):22–30. doi:10.1016/j.bcp.2010.02.016

    PubMed  CAS  Google Scholar 

  • Lu YY, Chen TS, Wang XP et al (2010b) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques. J Biomed Opt doi: 10.1117/1.3481141

  • Lu JJ, Chen SM, Zhang XW et al (2011) The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drugs 29(6):1276–1283. doi:10.1007/s10637-010-9481-8

    PubMed  CAS  Google Scholar 

  • Mason AB, Miller MK, Funk WD et al (1993) Expression of glycosylated and nonglycosylated human transferrin in mammalian cells. Characterization of the recombinant proteins with comparison to three commercially available transferrins. Biochemistry 32:5472–5479. doi:10.1021/bi00071a025

    PubMed  CAS  Google Scholar 

  • McLean W, Ward SA (1998) In vitro neurotoxicity of artemisinin derivatives. Médecine Tropicale 58(3):28–31

    PubMed  CAS  Google Scholar 

  • Mercer AE, Copple IM, Maggs JL et al (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the Artemisinin Antimalarials. J Biol Chem 286(2):987–996. doi:10.1074/jbc.M110.144188

    PubMed  CAS  Google Scholar 

  • Mercer AE, Maggs JL, Sun XM et al (2007) Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem 282(13):9372–9382

    PubMed  CAS  Google Scholar 

  • Michaelis M, Kleinschmidt MC, Barth S et al (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79(2):130–136. doi:10.1016/j.bcp.2009.08.013

    PubMed  CAS  Google Scholar 

  • Miller MJ, Walz AJ, Zhu H et al (2011) Design, synthesis and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 133:2076–2079. doi:10.1021/ja109665t

    PubMed  CAS  Google Scholar 

  • Moore JC, Lai H, Li JR et al (1995) Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett 98(1):83–87. doi:10.1016/S0304-3835(06)80014-5

    PubMed  CAS  Google Scholar 

  • Morrissey C, Gallis B, Solazzi JW et al (2010) Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anticancer Drugs 21(4):423–432. doi:10.1097/CAD.0b013e328336f57b

    PubMed  CAS  Google Scholar 

  • Mu D, Chen W, Yu B et al (2007) Calcium and survivin are involved in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells. In: Methods and findings in experimental and clinical pharmacology, 29(1):33–38. doi:10.1358/mf.2007.29.1.1063493

  • Mu DG, Zhang W, Chu DL et al (2008) The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells. Cancer Chemother Pharmacol 61(4):639–645. doi:10.1007/s00280-007-0517-5

    PubMed  CAS  Google Scholar 

  • Nakase I, Lai H, Singh NP et al (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354(1–2):28–33. doi:10.1016/j.ijpharm.2007.09.003

    PubMed  CAS  Google Scholar 

  • Nakase I, Gallis B, Takatani-Nakase T et al (2009) Title: Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274(2):290–298. doi:10.1016/j.canlet.2008.09.023

    PubMed  CAS  Google Scholar 

  • Nam W, Tak J, Ryu JK et al (2007) Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 29(4):335–340. doi:10.1002/hed.20524

    PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    PubMed  CAS  Google Scholar 

  • Noori S, Hassan ZM (2011) Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol 271:67–72. doi:10.1016/j.cellimm.2011.06.008

    PubMed  CAS  Google Scholar 

  • Noori S, Hassan ZM (2012) Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radical Biol Med 52(9):1987–1999. doi:10.1016/j.freeradbiomed.2012.01.026

    CAS  Google Scholar 

  • Noori S, Naderi GA, Hassan ZM et al (2004) Immunosuppressive activity of a molecule isolated from Artemisia annua on DTH responses compared with cyclosporin A. Int Immunopharmacol 4:1301–1306

    PubMed  CAS  Google Scholar 

  • Noori S, Taghikhani M, Hassan ZM et al (2009) Tehranolide could shift the immune response towards Th1 and modulate the intra-tumor infiltrated T regulatory cells. Iran J Immunol 6:216–224. doi:IJIv6i4A7

    PubMed  CAS  Google Scholar 

  • Noori S, Hassan ZM, Taghikhani M et al (2010a) Dihydroartemisinin can inhibit calmodulin, calmodulin-dependent phosphodiesterase activity and stimulate cellular immune responses. Int Immunopharmacol 10(2):213–217. doi:10.1016/j.intimp.2009.11.002

    PubMed  CAS  Google Scholar 

  • Noori S, Taghikhani M, Hassan ZM et al (2010b) Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol Immunol 47(7–8):1579–1584. doi:10.1016/j.molimm.2010.01.007

    PubMed  CAS  Google Scholar 

  • Oh S, Jeong IH, Ahn CM et al (2004) Synthesis and antiangiogenic activity of thioacetal artemisinin derivatives. Bioorg Med Chem 12:3783–3790. doi:10.1016/j.bmc.2004.05.013

    PubMed  CAS  Google Scholar 

  • Oh S, Kim BJ, Singh NP et al (2009) Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Letters 274(1):33–39. doi:10.1016/j.canlet.2008.08.03l

    CAS  Google Scholar 

  • Ohgami Y, Elstad CA, Chung E et al (2010) Effect of hyperbaric oxygen on the anticancer effect of Artemisinin on Molt-4 human leukemia cells. Anticancer Res 30(11):4467–4470

    PubMed  CAS  Google Scholar 

  • O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of Artemisinin-the debate continues. Molecules 15(3):1705–1721. doi:10.3390/molecules15031705

    PubMed  Google Scholar 

  • Opsenica D, Kyle DE, Milhous WK et al (2003) Antimalarial, antimycobacterial and antiproliferative activity of phenyl substituted mixed tetraoxanes. J Serb Chem Soc 68(4–5):291–302. doi:10.2298/JSC0305291O

    CAS  Google Scholar 

  • Opsenica I, Opsenica D, Smith KS (2008) Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J Med Chem 51:2261–2266. doi:10.1021/jm701417a

    PubMed  CAS  Google Scholar 

  • Paik IH, Xie SJ, Shapiro TA et al (2006) Second generation, orally active, antimalarial, artemisinin-derived trioxane dimers with high stability, efficacy, and anticancer activity. J Med Chem 49(9):2731–2734. doi:10.1021/jm058288w

    PubMed  CAS  Google Scholar 

  • Panossian LA, Garga NI, Pelletier I (2005) Toxic brainstem encephalopathy after artemisinin treatment for breast cancer. Ann Neurol 58(5):812–813. doi:10.1002/ana.20815

    PubMed  Google Scholar 

  • Posner GH, Northrop J, Paik IH et al (2002) New chemical and biological aspects of artemisinin-derived trioxane dimers. Bioorg Med Chem 10(1):227–232. doi:10.1016/S0968-0896(01)00270-X

    PubMed  CAS  Google Scholar 

  • Posner GH, McRiner AJ, Paik IH et al (2004) Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J Med Chem 47(5):1299–1301. doi:10.1021/jm0303711

    PubMed  CAS  Google Scholar 

  • Qian ZM, Li H, Sun H et al (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    PubMed  CAS  Google Scholar 

  • Rasheed SAK, Efferth T, Asangani IA et al (2010) First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 127(6):1475–1485. doi:10.1002/ijc.25315

    PubMed  CAS  Google Scholar 

  • Reichert S, Reinboldt V, Hehlgans S et al (2012) A radiosensitizing effect of artesunate in glioblastoma cells is associated with a diminished expression of the inhibitor of apoptosis protein survivin. Radiother Oncol 103(3):394–401. doi:10.1016/j.radonc.2012.03.018

    PubMed  CAS  Google Scholar 

  • Reiter C, Herrmann A, Capci A et al (2012) New artesunic acid homodimers: potent reversal agents of multidrug resistance in leukemia cells. Bioorg Med Chem 20(18):5637–5641. doi:10.1016/j.bmc.2012.07.015

    PubMed  CAS  Google Scholar 

  • Reizenstein P (1991) Iron, free radicals and cancer. Med Oncol Tumor Phar 8(4):229–233

    Google Scholar 

  • Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25(12):1555–1561. doi:10.1248/bpb.25.1555

    PubMed  CAS  Google Scholar 

  • Rezaei B, Majidi N, Noori S et al (2011) Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells. J Nanopart Res 13(12):6339–6346. doi:10.1007/s11051-011-0376-1

    CAS  Google Scholar 

  • Ricci J, Park J, Chung WY et al (2010) Concise synthesis and antiangiogenic activity of artemisinin-glycolipid hybrids on chorioallantoic membranes. Bioorg Med Chem Lett 20:6858–6860. doi:10.1016/j.bmcl.2010.08.013

    PubMed  CAS  Google Scholar 

  • Ricci J, Kim M, Chung WY et al (2011) Discovery of Artemisinin-Glycolipid hybrids as anti-oral cancer agents. Chem Pharm Bull 59(12):1471–1475

    PubMed  CAS  Google Scholar 

  • Riganti C, Doublier S, Viarisio D et al (2009) Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1 alpha and P-glycoprotein overexpression. Br J Pharmacol 156(7):1054–1066. doi:10.1111/j.1476-5381.2009.00117.x

    PubMed  CAS  Google Scholar 

  • Righeschi C, Isacchi B, Bergonzi M et al (2011) Conventional, stealth and transferrin-conjugated liposomes for artemisinin delivery to cancer cells. Planta Med 77(12):1261. doi:10.1055/s-0031-1282193

    Google Scholar 

  • Schmuck G, Roehrdanz E, Haynes RK et al (2002) Neurotoxic mode of action of artemisinin. Antimicrob Agents Chemother 46(3):821–827. doi:10.1128/AAC.46.3.821-827.2002

    PubMed  CAS  Google Scholar 

  • Schmuck G, Klaus AM, Krötlinger F et al (2009) Developmental and reproductive toxicity studies on artemisone. Birth Defects Res B Dev Reprod Toxicol 86:131–143. doi:10.1002/bdrb.20192

    PubMed  CAS  Google Scholar 

  • Singh NP, Lai HC (2005) Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res 25:4325–4331

    PubMed  CAS  Google Scholar 

  • Singh NP, Panwar VK (2006) Case report of a pituitary macroadenoma treated with artemether. Integr Cancer Ther 5(4):391–394. doi:10.1177/1534735406295311

    PubMed  Google Scholar 

  • Singh NP, Verma KB (2002) Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch Oncol 10(4):279–280. doi:10.2298/AOO0204279S

    Google Scholar 

  • Singh NP, Lai HC, Park JS et al (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31(12):4111–4114

    PubMed  CAS  Google Scholar 

  • Slade D, Galal AM, Gul W et al (2009) Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorg Med Chem 17:7949–7957. doi:10.1016/j.bmc.2009.10.019

    PubMed  CAS  Google Scholar 

  • Stockwin LH, Han BN, Yu SX et al (2009) Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int J Cancer 125(6):1266–1275. doi:10.1002/ijc.24496

    PubMed  CAS  Google Scholar 

  • Terzic N, Opsenica D, Milic D et al (2007) Deoxycholic acid-derived tetraoxane antimalarials and antiproliferatives. J Med Chem 50(21):5118–5127. doi:10.1021/jm070684m

    PubMed  CAS  Google Scholar 

  • Thanaketpaisarn O, Waiwut P, Sakurai H et al (2011) Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-kappa B and PI3 K/Akt signaling pathways. Int J Oncol 39(1):279–285. doi:10.3892/ijo.2011.1017

    PubMed  CAS  Google Scholar 

  • Uhlemann AC, Cameron A, Eckstein-Ludwig U et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinin. Nat Struct Mol Biol 12:628–629. doi:10.1038/nsmb947

    PubMed  CAS  Google Scholar 

  • Vennerstrom JL, Dong Y, Andersen SL, Ager AL Jr et al (2000) Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5- tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5. 2] hexadecanes. J Med Chem 43:2753–2758

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799. doi:10.1038/nm1087

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang BC, Guo Y et al (2008a) Artemisinin inhibits tumor lymphangiogenesis by suppression of vascular endothelial growth factor C. Pharmacology 82(2):148–155. doi:10.1159/000148261

    PubMed  CAS  Google Scholar 

  • Wang JX, Tang W, Zhou R et al (2008b) The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. Br J Pharmacol 153:1303–1310. doi:10.1038/bjp.2008.11

    PubMed  CAS  Google Scholar 

  • Wang SJ, Gao Y, Chen H et al (2010) Dihydroartemisinin inactivates NF-kappa B and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293(1):99–108. doi:10.1016/j.canlet.2010.01.001

    PubMed  CAS  Google Scholar 

  • Wang SJ, Sun B, Cheng ZX et al (2011a) Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-kappa B pathway. Cancer Chemother Pharmacol 68(6):1421–1430. doi:10.1007/s00280-011-1643-7

    PubMed  CAS  Google Scholar 

  • Wang Y, Huang ZQ, Wang CQ et al (2011b) Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase C delta/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin Exp Pharmacol Physiol 38(1):11–18. doi:10.1111/j.1440-1681.2010.05454.x

    PubMed  CAS  Google Scholar 

  • Wang ZH, Yu Y, Ma J et al (2012) LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharmaceutics 9(9):2646–2657. doi:10.1021/mp3002107

    CAS  Google Scholar 

  • Weifeng T, Feng S, Xiangji L et al (2011) Artemisinin inhibits In vitro and In vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18(2–3):158–162. doi:10.1016/j.phymed.2010.07.003

    PubMed  Google Scholar 

  • Woerdenbag HJ, Moskal TA, Pras N et al (1993) Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56(6):849–856. doi:10.1021/np50096a007

    PubMed  CAS  Google Scholar 

  • Wu J, Hu D, Yang G et al (2011) Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J Cell Biochem 112(7):1938–1948. doi:10.1002/jcb.23114

    PubMed  CAS  Google Scholar 

  • Xie L, Zhai X, Liu C et al (2011a) Anti-tumor activity of new artemisinin-chalcone hybrids. Arch Pharm (Weinheim). 344(10):639–647. doi:10.1002/ardp.201000391

    PubMed  CAS  Google Scholar 

  • Xie LJ, Zhao YF, Zhai X et al (2011b) The Application of tandem aza-wittig reaction to synthesize artemisinin-guanidine hybrids and their anti-tumor activity. Arch Pharm 344(10):631–638. doi:10.1002/ardp.201000363

    CAS  Google Scholar 

  • Xie WL, Yang PH, Zeng X et al (2009) Effect of 4-(12-dihydroartemisininoxy) benzoic acid hydrazide transferrin tagged drug on human breast cancer cells. Chin J Anal Chem 37(5):671–675

    CAS  Google Scholar 

  • Xie WL, Yang PH, Zeng X et al (2010) Visual characterization of targeted effect of holo-transferrin-tagged dihydroartemisinin on human breast cancer cells. Chin Sci Bull 55(22):2390–2395. doi:10.1007/s11434-010-3284-3

    CAS  Google Scholar 

  • Xu H, He Y, Yang X et al (2007) Anti-malarial agent artesunate inhibits TNF-{alpha} induced production of proinflammatory cytokines via inhibition of NF-{kappa}B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatol 46:920–926. doi:10.1093/rheumatology/kem014

    CAS  Google Scholar 

  • Xu Q, Li ZX, Peng HQ et al (2011) Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line In vitro and In vivo. Biomed Biotechnol 12(4):247–255. doi:10.1631/jzus.B1000373

    CAS  Google Scholar 

  • Yang X, Wang W, Tan J et al (2009) Synthesis of a series of novel dihydroartemisinin derivatives containing a substituted chalcone with greater cytotoxic effects in leukemia cells. Bioorg Med Chem Lett 19:4385–4388. doi:10.1016/j.bmcl.2009.05.076

    PubMed  CAS  Google Scholar 

  • Youns M, Efferth T, Reichling J et al (2009) Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochem Pharmacol 78(3):273–283. doi:10.1016/j.bcp.2009.04.014

    PubMed  CAS  Google Scholar 

  • Zeng QP, Zhang PZ (2011) Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. Nitric Oxide 24(2):110–112. doi:10.1016/j.niox.2010.12.005

    PubMed  CAS  Google Scholar 

  • Zhao YY, Jiang WW, Li B et al (2011) Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G(2)/M phase. Int Immunopharmacol 11(12):2039–2046. doi:10.1016/j.intimp.2011.08.017

    PubMed  CAS  Google Scholar 

  • Zhang ZY, Yu SQ, Miao LY et al (2008) Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Zhongxiyi Jiehe Xuebao 6:134–138. doi:10.1016/j.bmcl.2009.05.076

    PubMed  CAS  Google Scholar 

  • Zhang SM, Gerhard GS (2009) Heme Mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. Plos One e7472. doi:10.1371/journal.pone.0007472

  • Zhou HJ, Wang WQ, Wu GD (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vasc Pharmacol 47(2–3):131–138. doi:10.1016/j.vph.2007.05.002

    CAS  Google Scholar 

  • Zhou HJ, Wang Z, Li A (2008) Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs 19(3):247–255. doi:10.1097/CAD.0b013e3282f3f152

    PubMed  Google Scholar 

  • Zhou HJ, Zhang JL, Li A et al (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother Pharmacol 66(1):21–29. doi:10.1007/s00280-009-1129-z

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Ivanescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanescu, B., Corciova, A. (2014). Artemisinin in Cancer Therapy. In: Aftab, T., Ferreira, J., Khan, M., Naeem, M. (eds) Artemisia annua - Pharmacology and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41027-7_12

Download citation

Publish with us

Policies and ethics