Skip to main content

Pea

  • Chapter
  • First Online:
Pulses

Abstract

Pea (Pisum sativum L.) is a major pulse grown worldwide, and Canada is the world’s largest producer of this crop. For 2018–2019 and 2019–2020, respectively, the production forecast was 3.581 × 109 and 4.300 × 109 kg, and the export forecast was 3.200 × 109 and 3.100 × 109 kg (Agriculture and Agri-Food Canada 2019). Peas have high nutritional value with high protein, starch, and fiber contents but low levels of fat and sodium. The chemical composition varies depending on the growing conditions, year, and variety. Furthermore, peas are gluten-free and not genetically modified and are low in allergens and glycemic index scores in comparison with many other cereals and pulses. Peas are generally consumed after being cooked. However, peas are also processed into ingredients, such as flour, protein-enriched ingredients, starch-enriched ingredients, and fibers, that can be used in the industry. Depending on the target application, different postharvest processes can be applied to peas. The most common processes are malting, dehulling, milling, fractionation, extraction, extrusion, and cooking. The basic principles of the aforementioned processes and their impact on the resulting pea ingredients are presented in this book chapter. Development of products from peas is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adebiyi, A. P., & Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128, 902–908.

    Article  CAS  Google Scholar 

  • Agboola, S. O., Mofolasayo, O. A., Watts, B. M., & Aluko, R. E. (2010). Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 43, 582–588.

    Article  CAS  Google Scholar 

  • Agriculture and Agri-Food Canada. (2019, September 19). Canada: Outlook for principal field crops. Retrieved September 17, 2019, from http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sector-intelligence/crops/reports-and-statistics-data-for-canadian-principal-field-crops/canada-outlook-for-principal-field-crops-2019-07-19/?id=1563981168187#a4.

  • Alonso, R., Orúe, E., Zabalza, M. J., Grant, G., & Marzo, F. (2000). Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 80, 397–403.

    Article  CAS  Google Scholar 

  • Aluko, R. E., Mofolasayo, O. A., & Watts, B. M. (2009). Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. Journal of Agricultural and Food Chemistry, 57, 9793–9800.

    Article  CAS  PubMed  Google Scholar 

  • Araya, H., Pak, N., Vera, G., & Alviña, M. (2003). Digestion rate of legume carbohydrates and glycemic index of legume-based meals. International Journal of Food Sciences and Nutrition, 54, 119–126.

    Article  PubMed  Google Scholar 

  • Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019). The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Science and Emerging Technologies, 52, 100–107.

    Article  CAS  Google Scholar 

  • Bani, P., Minuti, A., Ficuciello, V., Guerreschi, M., Astorri, G., & Galassi, G. (2009). In vitro digestibility of field pea as influenced by processing methods. Italian Journal of Animal Science, 8(Suppl. 2), 259–261.

    Article  Google Scholar 

  • Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences, 11, 4973–4990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Hdech, H., Gallant, D. J., Bouchet, B., Gueguen, J., & Melcion, J.-P. (1991). Extrusion-cooking of pea flour: Structural and immunocytochemical aspects. Food Structure, 10, 203–212.

    CAS  Google Scholar 

  • Black, R. G., Singh, U., & Meares, C. (1998). Effect of genotype and pretreatment of field peas (Pisum sativum) on their dehulling and cooking quality. Journal of the Science of Food and Agriculture, 77, 251–258.

    Article  CAS  Google Scholar 

  • Bodnaryk, R. P., Fields, P. G., Xie, Y., & Fulcher, K. A. (1999, September 21). Insecticidal factor from field peas. US Patent 5,955,082.

    Google Scholar 

  • Bogahawaththa, D., Bao Chau, N. H., Trivedi, J., Dissanayake, M., & Vasiljevic, T. (2019). Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT- Food Science and Technology, 102, 246–253.

    Article  CAS  Google Scholar 

  • Boye, J. I., & Ma, Z. (2015). Impact of processing on bioactive compounds of field peas. In V. Preedy (Ed.), Processing and impact on active components in food (pp. 63–70). London: Elsevier.

    Chapter  Google Scholar 

  • Boye, J. I., Zare, F., & Pletch, A. (2010a). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43, 414–431.

    Article  CAS  Google Scholar 

  • Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. (2010b). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43, 537–546.

    Article  CAS  Google Scholar 

  • Brummer, Y., Kaviani, M., & Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117–125.

    Article  CAS  Google Scholar 

  • Burger, T. G., & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology, 86, 25–33.

    Article  CAS  Google Scholar 

  • Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food Research International, 43, 461–482.

    Article  CAS  Google Scholar 

  • Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167(Part A), 59–64.

    Article  CAS  Google Scholar 

  • Carvajal-Piñero, J. M., Ramos, M., Jiménez-Rosado, M., Perez-Puyana, V., & Romero, A. (2019). Development of pea protein bioplastics by a thermomoulding process: Effect of the mixing stage. Journal of Polymers and the Environment, 27, 968–978. https://doi.org/10.1007/s10924-019-01404-3.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Sosulski, F., & Bose, A. (1979). Ultracentrifugation of salt-soluble proteins in ten legume species. Journal of the Science of Food and Agriculture, 30, 766–771.

    Article  CAS  Google Scholar 

  • Chan, C. B., Gupta, J., Kozicky, L., Hashemi, Z., & Yang, K. (2014). Improved glucose tolerance in insulin-resistant rats after pea hull feeding is associated with changes in lipid metabolism-targeted transcriptome. Applied Physiology, Nutrition, and Metabolism, 39, 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydrate Polymers, 73, 8–17.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, C., Chang, P. R., Anderson, D. P., & Huneault, M. A. (2009). Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polymer Engineering and Science, 49, 369–378.

    Article  CAS  Google Scholar 

  • Chen, M., Lu, J., Liu, F., Nsor-Atindana, J., Xu, F., Goff, H. D., Ma, J., & Zhong, F. (2019). Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 88, 247–255.

    Article  CAS  Google Scholar 

  • Cheng, M., Qi, J.-R., Feng, J.-L., Cao, J., Wang, J.-M., & Yang, X.-Q. (2018). Pea soluble polysaccharides obtained from two enzyme-assisted extraction methods and their application as acidified milk drinks stabilizers. Food Research International, 109, 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Corrales, M., Han, J. H., & Tauscher, B. (2009). Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. International Journal of Food Science and Technology, 44, 425–433.

    Article  CAS  Google Scholar 

  • Cruz-Suarez, L. E., Ricque-Marie, D., Tapia-Salazar, M., McCallum, I. M., & Hickling, D. (2001). Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in diets for blue shrimp (Litopenaeus stylirostris). Aquaculture, 196, 87–104.

    Article  Google Scholar 

  • Dahl, W. J. (2017). Pea hull fiber: A dietary fiber to modulate gastrointestinal function and gut microbiota. Cereal Foods World, 62, 203–206.

    Article  CAS  Google Scholar 

  • Dalgetty, D. D., & Baik, B.-K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80, 310–315.

    Article  CAS  Google Scholar 

  • Dalgetty, D. D., & Baik, B.-K. (2006). Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal Chemistry, 83, 269–274.

    Article  CAS  Google Scholar 

  • Davies, S. J., & Gouveia, A. (2010). Response of common carp fry fed diets containing a pea seed meal (Pisum sativum) subjected to different thermal processing methods. Aquaculture, 305, 117–123.

    Article  Google Scholar 

  • Della Valle, G., Quillien, L., & Gueguen, J. (1994). Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour. Journal of the Science of Food and Agriculture, 64, 509–517.

    Article  CAS  Google Scholar 

  • Des Marchais, L.-P., Foisy, M., Mercier, S., Villeneuve, S., & Mondor, M. (2011). Bread-making potential of pea protein isolate produced by a novel ultrafiltration/diafiltration process, 11th International Congress on Engineering and Food (ICEF11). Procedia Food Science, 1, 1425–1430.

    Article  CAS  Google Scholar 

  • Djoullah, A., Husson, F., & Saurel, R. (2018). Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocolloids, 77, 636–645.

    Article  CAS  Google Scholar 

  • Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry, Analytical Edition, 18, 499.

    Article  CAS  Google Scholar 

  • Eyaru, R., Shrestha, A. K., & Arcot, J. (2009). Effect of various processing techniques on digestibility of starch in Red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum). Food Research International, 42, 956–962.

    Article  CAS  Google Scholar 

  • Felix, M., Perez-Puyana, V., Romero, A., & Guerrero, A. (2010). Development of thermally processed bioactive pea protein gels: Evaluation of mechanical and antioxidant properties. Food and Bioproducts Processing, 101, 74–83.

    Article  CAS  Google Scholar 

  • Fields, P. G., Xie, Y. S., & Hou, X. (2001). Repellent effect of pea (Pisum sativum) fractions against stored-product insects. Journal of Stored Products Research, 37, 359–370.

    Article  PubMed  Google Scholar 

  • Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N.-G., & Sandberg, A.-S. (2001). Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. Journal of Agricultural and Food Chemistry, 49, 1208–1212.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmeister, H., & Meuser, F. (2003). Impact of processing on functional properties of protein products from wrinkled peas. Journal of Food Engineering, 56, 119–129.

    Article  Google Scholar 

  • Goyal, R. K., Vishwakarma, R. K., & Wanjari, O. D. (2008). Optimisation of the pigeon pea dehulling process. Biosystems Engineering, 99, 56–61.

    Article  Google Scholar 

  • Greenwell, H. L., Gramkow, J. L., Jolly-Breithaupt, M. L., MacDonald, J. C., & Jenkins, K. H. (2018). Effects of field pea supplementation on digestibility and rumen volatile fatty acid concentrations of beef-cattle diets containing high and low quality forages. The Professional Animal Scientists, 34, 631–641.

    Article  Google Scholar 

  • Gulewicz, P., Szymaniec, S., Bubak, B., Frias, J., Vidal-Valverde, C., Trojanowska, K., & Gulewicz, K. (2002). Biological activity of α-galactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. Journal of Agricultural and Food Chemistry, 50, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Han, H., & Baik, B.-K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. International Journal of Food Science and Technology, 43, 1971–1978.

    Article  CAS  Google Scholar 

  • Hashemi, Z., Yang, K., Yang, H., Jin, A., Ozga, J., & Chan, C. B. (2015). Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet–fed rats. Applied Physiology, Nutrition, and Metabolism, 40, 323–333.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, Z., Fouhse, J., Im, H. S., Chan, C. B., & Willing, B. P. (2017). Dietary pea fiber supplementation improves glycemia and induces changes in the composition of gut microbiota, serum short chain fatty acid profile and expression of mucins in glucose intolerant rats. Nutrients, 9, 1236.

    Article  PubMed Central  CAS  Google Scholar 

  • Holt, N. W., & Sosulski, F. W. (1979). Amino acids composition and protein quality of field peas. Canadian Journal of Plant Science, 59, 653–660.

    Article  CAS  Google Scholar 

  • Hood-Niefer, S. D., & Tyler, R. T. (2010). Effect of protein, moisture content and barrel temperature on the physicochemical characteristics of pea flour extrudates. Food Research International, 43, 659–663.

    Article  CAS  Google Scholar 

  • Hou, X., & Fields, P. (2003). Effectiveness of protein-rich pea flour for the control of stored-product beetles. Entomologia Experimentalis et Applicata, 108, 125–131.

    Article  Google Scholar 

  • Hou, X., Fields, P., & Taylor, W. (2004a). Combination of protein-rich pea flour and pea extract with insecticides and enzyme inhibitors for control of stored-product beetles. Canadian Entomologist, 136, 581–590.

    Article  Google Scholar 

  • Hou, X., Fields, P., Flinn, P., Perez-Mendoza, J., & Baker, J. (2004b). Control of stored-product beetles with combinations of protein-rich pea flour and parasitoids. Environmental Entomology, 33, 671–680.

    Article  Google Scholar 

  • Islam, F., Gopalan, V., Lam, A. K.-Y., & Kabir, S. R. (2018). Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. International Journal of Biological Macromolecules, 117, 1050–1057.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Moreno, E., Chamorro, S., Frikha, M., Safaa, H. M., Lázaro, R., & Mateos, G. G. (2011). Effects of increasing levels of pea hulls in the diet on productive performance, development of the gastrointestinal tract, and nutrient retention of broilers from one to eighteen days of age. Animal Feed Science and Technology, 168, 100–112.

    Article  Google Scholar 

  • Kaack, K., & Pedersen, L. (2005). Application of by-products from industrial processing of potato flour and yellow peas as ingredients in low-fat high-fibre sausages. European Food Research and Technology, 221, 313–319.

    Article  CAS  Google Scholar 

  • Kadlec, P., Rubecova, A., Hinkova, A., Kaasova, J., Bubnik, Z., & Pour, V. (2001). Processing of yellow pea by germination, microwave treatment and drying. Innovative Food Science and Emerging Technologies, 2, 133–137.

    Article  CAS  Google Scholar 

  • Kaiser, A. C., Barber, N., Manthey, F., & Hall, C., III. (2019). Physicochemical properties of hammer‐milled yellow split pea (Pisum Sativum L.). Cereal Chemistry, 96, 313–323.

    Article  CAS  Google Scholar 

  • Kamaljit, K., Baljeet, S., & Amarjeet, K. (2010). Preparation of bakery products by incorporating pea flours as a functional ingredient. American Journal of Food Technology, 5, 130–135.

    Article  CAS  Google Scholar 

  • Kaya, E., Tuncel, N. Y., & Tuncel, N. B. (2018). Utilization of lentil, pea, and faba bean hulls in Turkish noodle production. Journal of Food Science and Technology, 55, 1734–1745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khattab, R. Y., Arntfield, S. D., & Nyachoti, C. M. (2009). Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT- Food Science and Technology, 42, 1107–1112.

    Article  CAS  Google Scholar 

  • Klüver, E., & Meyer, M. (2015). Thermoplastic processing, rheology, and extrudate properties of wheat, soy, and pea proteins. Polymer Engineering and Science, 55, 1912–1919.

    Article  CAS  Google Scholar 

  • Kristiawan, M., Micard, V., Maladira, P., Alchamieh, C., Maigret, J.-E., Réguerre, A.-L., Emin, M. A., & Della Valle, G. (2018). Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Research International, 108, 203–215.

    Article  CAS  PubMed  Google Scholar 

  • Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Review International, 34, 126–147.

    Article  CAS  Google Scholar 

  • Leite, T. S., de Jesus, A. L. T., Schmiele, M., Tribst, A. A. L., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT- Food Science and Technology, 76, 361–369.

    Article  CAS  Google Scholar 

  • Li, C., & Ganjyal, G. M. (2017). Chemical composition, pasting, and thermal properties of 22 different varieties of peas and lentils. Cereal Chemistry, 94, 392–399.

    Article  CAS  Google Scholar 

  • Li, H., Kim, N.-J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100, 3245–3251.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Kowalski, R. J., Li, L., & Ganjyal, G. M. (2017). Extrusion expansion characteristics of samples of select varieties of whole yellow and green dry pea flours. Cereal Chemistry, 94, 385–391.

    Article  CAS  Google Scholar 

  • Liang, H.-N., & Tang, C.-H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33, 309–319.

    Article  CAS  Google Scholar 

  • Lu, Y., Weng, L., & Cao, X. (2006). Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites. Carbohydrate Polymers, 63, 198–204.

    Article  CAS  Google Scholar 

  • Ma, Z., Boye, J. I., Simpson, B. K., Prasher, S. O., Monpetit, D., & Malcolmson, L. (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International, 44, 2534–2544.

    Article  CAS  Google Scholar 

  • Ma, Z., Boye, J. I., & Hu, X. (2017). In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Research International, 92, 64–78.

    Article  CAS  PubMed  Google Scholar 

  • Makri, E., Papalamprou, E., & Doxastakis, G. (2005). Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 19, 583–594.

    Article  CAS  Google Scholar 

  • Martín-Cabrejas, M. A., Ariza, N., Esteban, R., Molla, E., Waldron, K., & López-Andréu, F. J. (2003). Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). Journal of Agricultural and Food Chemistry, 51, 1254–1259.

    Article  PubMed  CAS  Google Scholar 

  • Maskus, H., & Arntfield, S. (2015). Extrusion processing and evaluation of an expanded, puffed pea snack product. Journal of Nutrition & Food Sciences, 5, 378.

    Google Scholar 

  • Maskus, H., Bourré, L., Fraser, S., Sarkar, A., & Malcolmson, L. (2016). Effects of grinding method on the compositional, physical, and functional properties of whole and split yellow pea flours. Cereal Foods World, 61, 59–64.

    Article  CAS  Google Scholar 

  • Mehyar, G. F., Han, J. H., Holley, R. A., Blank, G., & Hydamaka, A. (2007). Suitability of pea starch and calcium alginate as antimicrobial coatings on chicken skin. Poultry Science, 86, 386–393.

    Article  CAS  PubMed  Google Scholar 

  • Mession, J.-L., Chihi, M. L., Sok, N., & Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243.

    Article  CAS  Google Scholar 

  • Minihane, A. M., & Rimbach, G. (2002). Iron absorption and the iron binding and anti-oxidant properties of phytic acid. International Journal of Food Science and Technology, 37, 741–748.

    Article  CAS  Google Scholar 

  • Mollard, R. C., Luhovyy, B. L., Smith, C., & Anderson, G. H. (2014). Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men—A randomized crossover trial. Applied Physiology, Nutrition, and Metabolism, 39, 1360–1365.

    Article  CAS  PubMed  Google Scholar 

  • Mondor, M., Tuyishime, O., & Drolet, H. (2012). Production of pea protein concentrates by ultrafiltration: Influence of hollow-fibre module. Innovative Food Science and Emerging Technologies, 14, 135–138.

    Article  CAS  Google Scholar 

  • Mondor, M., Guévremont, É., & Villeneuve, S. (2014). Processing, characterization and bread-making potential of malted yellow peas. Food Bioscience, 7, 11–18.

    Article  CAS  Google Scholar 

  • Nichols, N. N., Dien, B. S., Wu, Y. V., & Cotta, M. A. (2005). Ethanol fermentation of starch from field peas. Cereal Chemistry, 82, 554–558.

    Article  CAS  Google Scholar 

  • Nikolopoulou, D., Grigorakis, K., Stasini, M., Alexis, M. N., & Iliadis, K. (2007). Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chemistry, 103, 847–852.

    Article  CAS  Google Scholar 

  • Nosworthy, M. G., Franczyk, A. J., Medina, G., Neufeld, J., Appah, P., Utioh, A., Frohlich, P., & House, J. D. (2017). Effect of processing on the in vitro and in vivo protein quality of yellow and green split peas (Pisum sativum). Journal of Agricultural and Food Chemistry, 65, 7790–7796.

    Article  CAS  PubMed  Google Scholar 

  • Oliete, B., Potin, F., Cases, E., & Saurel, R. (2018). Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innovative Food Science and Emerging Technologies, 47, 292–300.

    Article  CAS  Google Scholar 

  • Owusu-Asiedu, A., Baidoo, S. K., & Nyachoti, C. M. (2002). Effect of heat processing on nutrient digestibility in pea and supplementing amylase and xylanase to raw, extruded or micronized pea-based diets on performance of early-weaned pigs. Canadian Journal of Animal Science, 82, 367–374.

    Article  CAS  Google Scholar 

  • Pelgrom, P. J. M., Vissers, A. M., Boom, R. M., & Schutyser, M. A. I. (2013). Dry fractionation for production of functional pea protein concentrates. Food Research International, 53, 232–239.

    Article  CAS  Google Scholar 

  • Perez, V., Felix, M., Romero, A., & Guerrero, A. (2016). Characterization of pea protein-based bioplastics processed by injection moulding. Food and Bioproducts Processing, 97, 100–108.

    Article  CAS  Google Scholar 

  • Perez-Puyana, V., Felix, M., Romero, A., & Guerrero, A. (2016). Effect of the injection moulding processing conditions on the development of pea protein-based bioplastics. Journal of Applied Polymer Science, 133, 43306. https://doi.org/10.1002/app.43306.

    Article  CAS  Google Scholar 

  • Periago, M. J., Vidal, M. L., Ros, G., Rincón, F., Martínez, C., López, G., Rodrigo, J., & Martínez, I. (1998). Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chemistry, 63, 71–78.

    Article  CAS  Google Scholar 

  • Petitot, M., Boyer, L., Minier, C., & Micard, V. (2010). Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Research International, 43, 634–641.

    Article  CAS  Google Scholar 

  • Piecyk, M., Wołosiak, R., Drużynska, B., & Worobiej, E. (2012). Chemical composition and starch digestibility in flours from Polish processed legume seeds. Food Chemistry, 135, 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  • Pietrasik, Z., & Janz, J. A. M. (2010). Utilization of pea flour, starch-rich and fiber-rich fractions in low fat bologna. Food Research International, 43, 602–608.

    Article  CAS  Google Scholar 

  • Prairie Green Renewable Energy. (2016). Not your typical ethanol plant. Retrieved April 25, 2019, from http://pgre.ca/difference/.

  • Pretheep Kumar, P., Mohan, S., & Balasubramanian, G. (2004). Effect of whole-pea flour and a protein-rich fraction as repellents against stored-product insects. Journal of Stored Products Research, 40, 547–552.

    Article  Google Scholar 

  • Qamar, S., Bhandari, B., & Prakash, S. (2019). Effect of different homogenisation methods and UHT processing on the stability of pea protein emulsion. Food Research International, 116, 1374–1385. https://doi.org/10.1016/j.foodres.2018.10.028.

    Article  CAS  PubMed  Google Scholar 

  • Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: Composition, structure and properties – A review. Starch/Stärke, 54, 217–234.

    Article  CAS  Google Scholar 

  • Reichert, R. D. (1981). Quantitative isolation and estimation of cell wall material from dehulled pea (Pisum sativum) flours and concentrates. Cereal Chemistry, 58, 266–270.

    CAS  Google Scholar 

  • Reichert, R. D. (1982). Air classification of peas (Pisum sativum) varying widely in protein content. Journal of Food Science, 47, 1263–1268.

    Article  CAS  Google Scholar 

  • Rempel, C., Geng, X., & Zhang, Y. (2019). Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chemistry, 276, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Ribéreau, S., Aryee, A. N. A., Tanvier, S., Han, J., & Boye, J. I. (2018). Composition, digestibility, and functional properties of yellow pea as affected by processing. Journal of Food Processing & Preservation, 42, e13375.

    Article  CAS  Google Scholar 

  • Röhe, I., Goodarzi Boroojeni, F., & Zentek, J. (2017). Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers. Poultry Science, 96, 4075–4084.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, L. A., Pérez, A., Ruiz, R., Guzmán, M. A., Aranda-Olmedo, I., & Clemente, A. (2014). Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture, 94, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016a). Mechanical and physical properties of pea starch edible films in the presence of glycerol. Journal of Food Processing & Preservation, 40, 1339–1351.

    Article  CAS  Google Scholar 

  • Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016b). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342–352.

    Article  CAS  Google Scholar 

  • Saberi, B., Thakur, R., Bhuyan, D. J., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch/Stärke, 69, 1600227.

    Article  CAS  Google Scholar 

  • Saberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018a). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9–20.

    Article  CAS  Google Scholar 

  • Saberi, B., Golding, J. B., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018b). Effect of biocomposite edible coatings based on pea starch and guar gum on nutritional quality of “Valencia” orange during storage. Starch/Stärke, 70, 1700299.

    Article  CAS  Google Scholar 

  • Sarkar, A., Kate, A. E., Kumbhar, B. K., & Singh, A. (2015). Effect of alkaline pretreatment parameters on saccharification of waste pea hulls. Journal of Biobased Materials and Bioenergy, 9, 433–438.

    Article  CAS  Google Scholar 

  • Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science and Technology, 45, 327–335.

    Article  CAS  Google Scholar 

  • Semple, R. L., Hicks, P. A., Lozare, J. V., & Castermans, A. (1992). Towards integrated commodity and pest management in grain storage: A training manual for application in humid tropical storage systems. Rome: Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • Shamsuddin, A. M. (2002). Anti-cancer function of phytic acid. International Journal of Food Science and Technology, 37, 769–782.

    Article  CAS  Google Scholar 

  • Shand, P. J., Ya, H., Pietrasik, Z., & Wanasundara, P. K. J. P. D. (2007). Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry, 102, 1119–1130.

    Article  CAS  Google Scholar 

  • Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food, 7, 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Shoaib, A., Sahar, A., Sameen, A., Saleem, A., & Tahir, A. T. (2018). Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets. Journal of Food Processing & Preservation, 42, e13763.

    Article  CAS  Google Scholar 

  • Sørensen, M., Morken, T., Kosanovic, M., & Øverland, M. (2011). Pea and wheat starch possess different processing characteristics and affect physical quality and viscosity of extruded feed for Atlantic salmon. Aquaculture Nutrition, 17, e326–e336.

    Article  Google Scholar 

  • Soto-Navarro, S. A., Williams, G. J., Bauer, M. L., Lardy, G. P., Landblom, D. G., & Caton, J. S. (2004). Effect of field pea replacement level on intake and digestion in beef steers fed by-product-based medium-concentrate diets. Journal of Animal Science, 82, 1855–1862.

    Article  CAS  PubMed  Google Scholar 

  • Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., & Nickerson, M. T. (2015a). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38.

    Article  CAS  Google Scholar 

  • Stone, A. K., Avramenko, N. A., Warkentin, T. D., & Nickerson, M. T. (2015b). Functional properties of protein isolates from different pea cultivars. Food Science and Biotechnology, 24, 827–833.

    Article  CAS  Google Scholar 

  • Sun, X. D., & Arntfield, S. D. (2010). Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International, 43, 509–515.

    Article  CAS  Google Scholar 

  • Sun, X. D., & Arntfield, S. D. (2011). Dynamic oscillatory rheological measurement and thermal properties of pea protein extracted by salt method: Effect of pH and NaCl. Journal of Food Engineering, 105, 577–582.

    Article  CAS  Google Scholar 

  • Taherian, A. R., Mondor, M., Labranche, J., Drolet, H., Ippersiel, D., & Lamarche, F. (2011). Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, 44, 2505–2514.

    Article  CAS  Google Scholar 

  • Thiessen, D. L., Campbell, G. L., & Adelizi, P. D. (2003). Digestibility and growth performance of juvenile rainbow trout (Oncorhynchus mykiss) fed with pea and canola products. Aquaculture Nutrition, 9, 67–75.

    Article  CAS  Google Scholar 

  • Tian, S., Kyle, W. S. A., & Small, D. M. (1999). Pilot scale isolation of proteins from field peas (Pisum sativum L.) for use as food ingredients. International Journal of Food Science and Technology, 34, 33–39.

    Article  CAS  Google Scholar 

  • Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43, 450–460.

    Article  CAS  Google Scholar 

  • Velayudhan, D. E., Mejicanos, G. A., & Nyachoti, C. M. (2019). Evaluation of pea protein isolates as a protein source for broilers. Poultry Science, 98, 803–810.

    Article  CAS  PubMed  Google Scholar 

  • Verma, A. K., Banerjee, R., & Sharma, B. D. (2015). Quality characteristics of low fat chicken nuggets: Effect of salt substitute blend and pea hull flour. Journal of Food Science and Technology, 52, 2288–2295.

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Valverde, C., Frias, J., Sierra, I., Blazquez, I., Lambein, F., & Kuo, Y.-H. (2002). New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215, 472–477.

    Article  CAS  Google Scholar 

  • Vidal-Valverde, C., Frias, J., Hernández, A., Martín-Alvarez, P. J., Sierra, I., Rodríguez, C., Blazquez, I., & Vicente, G. (2003). Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. Journal of the Science of Food and Agriculture, 83, 298–306.

    Article  CAS  Google Scholar 

  • Villeneuve, S., & Mondor, M. (2014). Processing and bread-making potential of proteins isolated from malted and non-malted pea seeds by ultrafiltration/diafiltration. Food Bioscience, 8, 33–36.

    Article  CAS  Google Scholar 

  • Vinauskienė, R., Morkūnaite, R., & Leskauskaitė, D. (2015). The influence of pea products on the functional properties of frankfurters. CyTA Journal of Food, 13, 282–292.

    Article  CAS  Google Scholar 

  • Wang, N., Hatcher, D. W., & Gawalko, E. J. (2008). Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry, 111, 132–138.

    Article  CAS  Google Scholar 

  • Wang, N., Maximiuk, L., & Toews, R. (2012). Pea starch noodles: Effect of processing variables on characteristics and optimisation of twin-screw extrusion process. Food Chemistry, 133, 742–753.

    Article  CAS  Google Scholar 

  • Xiong, T., Ye, X., Su, Y. T., Chen, X., Sun, H., Li, B., & Chen, Y. (2018a). Identification and quantification of proteins at adsorption layer of emulsion stabilized by pea protein isolates. Colloids and Surfaces B: Biointerfaces, 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018b). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Yao, W., Liu, C., Xi, X., & Wang, H. (2010). Impact of process conditions on digestibility of pea starch. International Journal of Food Properties, 13, 1355–1363.

    Article  CAS  Google Scholar 

  • Zhao, B., & Chang, K. C. (2008). Evaluation of effects of soaking and precooking conditions on the quality of precooked dehydrated pea, lentil and chickpea products. Journal of Food Processing & Preservation, 32, 517–532.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mondor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondor, M. (2020). Pea. In: Manickavasagan, A., Thirunathan, P. (eds) Pulses. Springer, Cham. https://doi.org/10.1007/978-3-030-41376-7_14

Download citation

Publish with us

Policies and ethics