Abstract
The nomenclature of stem and progenitor cells is reviewed. In the adult body, only glial cells and not neurons can proliferate. The glial cell with the highest proliferation rate is the oligodendrocyte progenitor followed by microglia. Astrocytes have a very low rate and brain macrophages do not divide inside the parenchyma. All these proliferation rates increase after injury, but they seem to be under neuronal control. This is most obvious in the case of oligodendrocyte progenitors which are on the receiving side of synapses with neurons. In three brain areas, glial cell-like stem cells can – through various proliferation steps and migration patterns – create new neurons. A minority of these neurons are incorporated into functional circuits. Injury can – depending on the species, location, and type of injury – increase adult neurogenesis. It is not clear if these mechanisms lead to functional replacement of damaged neurons. However, efforts are made to use these attempts for therapeutic interventions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bonfanti L, Peretto P. Adult neurogenesis in mammals–a theme with many variations. Eur J Neurosci. 2011;34(6):930–50.
von Streitberg A, Jäkel S, Eugenin von Bernhardi J, Straube C, Buggenthin F, Marr C, et al. NG2-glia transiently overcome their homeostatic network and contribute to wound closure after brain injury. Front Cell Dev Biol. 2021;9:662056.
Vigano F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16(10):1370–2.
Eugenin-von Bernhardi J, Dimou L. NG2-glia, more than progenitor cells. Adv Exp Med Biol. 2016;949:27–45.
Monje M, Káradóttir RT. The bright and the dark side of myelin plasticity: neuron-glial interactions in health and disease. Semin Cell Dev Biol. 2021;116:10–5.
Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science (New York, NY). 2014;344(6183):1252304.
Ortiz FC, Habermacher C, Graciarena M, Houry PY, Nishiyama A, Nait Oumesmar B, et al. Neuronal activity in vivo enhances functional myelin repair. JCI insight. 2019;5(9):e123434.
Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O, Verhaak RG, et al. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A. 2014;111(40):E4214–23.
Ohlig S, Clavreul S, Thorwirth M, Simon-Ebert T, Bocchi R, Ulbricht S, et al. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J. 2021;40:e107532.
García-Cáceres C, Balland E, Prevot V, Luquet S, Woods SC, Koch M, et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci. 2019;22(1):7–14.
Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci. 2013;16(5):580–6.
Frik J, Merl-Pham J, Plesnila N, Mattugini N, Kjell J, Kraska J, et al. Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Rep. 2018;19(5):e45294.
Götz M, Sirko S, Beckers J, Irmler M. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-wide expression analysis. Glia. 2015;63(8):1452–68.
Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Author correction: repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci. 2021;24(2):288.
Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18(2):391–405.
Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43(1):92–106.
Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain J Neurol. 2013;136(Pt 12):3578–88.
Khan A, Ju F, Xie W, Tariq Hafeez M, Cheng X, Yang Z, et al. Transcriptomic analysis reveals differential activation of microglial genes after ischemic stroke in mice. Neuroscience. 2017;348:212–27.
Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, et al. Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem. 2010;285(50):39447–57.
Ribeiro FF, Xapelli S. An overview of adult neurogenesis. Adv Exp Med Biol. 2021;1331:77–94.
Schneider J, Karpf J, Beckervordersandforth R. Role of astrocytes in the neurogenic niches. Methods Mol Biol (Clifton, NJ). 2019;1938:19–33.
Götz M. Revising concepts about adult stem cells. Science (New York, NY). 2018;359(6376):639–40.
Matsubara S, Matsuda T, Nakashima K. Regulation of adult mammalian neural stem cells and neurogenesis by cell extrinsic and intrinsic factors. Cell. 2021;10(5):1145.
Gengatharan A, Bammann RR, Saghatelyan A. The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci. 2016;10:149.
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, et al. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem. 2018;146(5):500–25.
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep. 2021;44(2):zsaa173.
Ceanga M, Dahab M, Witte OW, Keiner S. Adult neurogenesis and stroke: a tale of two neurogenic niches. Front Neurosci. 2021;15:700297.
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40.
Palma-Tortosa S, Hurtado O, Pradillo JM, Ferreras-Martín R, García-Yébenes I, García-Culebras A, et al. Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke. Brain Behav Immun. 2019;80:573–82.
Cuartero MI, García-Culebras A, Torres-López C, Medina V, Fraga E, Vázquez-Reyes S, et al. Post-stroke Neurogenesis: friend or foe? Front Cell Dev Biol. 2021;9:657846.
Niv F, Keiner S, Krishna WOW, Lie DC, Redecker C. Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke. 2012;43(9):2468–75.
Toni N, Schinder AF. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;8(1):a018903.
Cuartero MI, de la Parra J, Pérez-Ruiz A, Bravo-Ferrer I, Durán-Laforet V, García-Culebras A, et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Invest. 2019;129(4):1536–50.
Sierra A, Martín-Suárez S, Valcárcel-Martín R, Pascual-Brazo J, Aelvoet SA, Abiega O, et al. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell. 2015;16(5):488–503.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Walz, W. (2023). Adult Glial Cell Proliferation and Neurogenesis. In: The Gliocentric Brain. Springer, Cham. https://doi.org/10.1007/978-3-031-48105-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-48105-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48104-8
Online ISBN: 978-3-031-48105-5
eBook Packages: MedicineMedicine (R0)