""" # Example: Indexing BEIR dataset and upload to Hugging Face Hub This will show how to index a dataset from BEIR and upload it to the Hugging Face Hub. To run this example, you need to install the following dependencies: ```bash pip install beir bm25s[full] ``` Make sure to replace `write-your-username-here` with your Hugging Face username, or set the `HF_USERNAME` environment variable. Then, run with: ``` export HF_USERNAME="write-your-username-here" export HF_TOKEN="your-hf-token" python examples/index_and_upload_to_hf.py ``` """ import os import beir.util from beir.datasets.data_loader import GenericDataLoader import Stemmer import bm25s.hf from bm25s.utils.beir import BASE_URL def main(user, save_dir="datasets", repo_name="bm25s-scifact-testing", dataset="scifact"): # First, use the beir library to download the dataset, and process it data_path = beir.util.download_and_unzip(BASE_URL.format(dataset), save_dir) corpus, _, __ = GenericDataLoader(data_folder=data_path).load(split="test") corpus_records = [ {'id': k, 'title': v["title"], 'text': v["text"]} for k, v in corpus.items() ] corpus_lst = [r["title"] + " " + r["text"] for r in corpus_records] # We will use the snowball stemmer from the PyStemmer library and tokenize the corpus stemmer = Stemmer.Stemmer("english") corpus_tokenized = bm25s.tokenize(corpus_lst, stemmer=stemmer) # We create a BM25 retriever, index the corpus, and save to Hugging Face Hub retriever = bm25s.hf.BM25HF() retriever.index(corpus_tokenized) hf_token = os.getenv("HF_TOKEN") retriever.save_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token, corpus=corpus_records) # you can do the same with a tokenizer class tokenizer = bm25s.hf.TokenizerHF(stemmer=stemmer) tokenizer.tokenize(corpus_lst, update_vocab=True) tokenizer.save_vocab_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token) # you can also load the retriever and tokenizer from the hub tokenizer_new = bm25s.hf.TokenizerHF(stemmer=stemmer, stopwords=[]) tokenizer_new.load_vocab_from_hub(repo_id=f"{user}/{repo_name}", token=hf_token) # You can do the same for stopwords stopwords = tokenizer.stopwords tokenizer.save_stopwords_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token) # you can also load the stopwords from the hub tokenizer_new.load_stopwords_from_hub(repo_id=f"{user}/{repo_name}", token=hf_token) print("Original stopwords:", stopwords) print("Reloaded stopwords:", tokenizer_new.stopwords) if __name__ == "__main__": user = os.getenv("HF_USERNAME", "write-your-username-here") cont = input(f"Are you sure you want to upload as user '{user}'? (yes/no): ") if cont.lower() == "yes": main(user=user)