{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "domestic-remove", "metadata": {}, "source": [ "(template_notebook)=\n", "# This is a template notebook\n", "\n", ":::{post} January, 2023\n", ":tags: binomial regression, generalized linear model, \n", ":category: beginner, reference\n", ":author: Jane Doe\n", ":::" ] }, { "attachments": {}, "cell_type": "markdown", "id": "72588976-efc3-4adc-bec2-bc5b6ac4b7e1", "metadata": {}, "source": [ "This is some introductory text. Consult the [style guide](https://docs.pymc.io/en/latest/contributing/jupyter_style.html)." ] }, { "cell_type": "code", "execution_count": 1, "id": "elect-softball", "metadata": { "tags": [] }, "outputs": [], "source": [ "import arviz as az\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import pymc as pm" ] }, { "cell_type": "code", "execution_count": 2, "id": "level-balance", "metadata": { "tags": [] }, "outputs": [], "source": [ "%config InlineBackend.figure_format = 'retina' # high resolution figures\n", "az.style.use(\"arviz-darkgrid\")\n", "rng = np.random.default_rng(42)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "sapphire-yellow", "metadata": {}, "source": [ "## My lovely content here" ] }, { "cell_type": "code", "execution_count": 3, "id": "21e66b38", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Your code here\n" ] } ], "source": [ "print(\"Your code here\")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "b743d58b-2678-4e17-9947-a8fe4ed03e21", "metadata": {}, "source": [ "## Authors\n", "- Authored by [Benjamin T. Vincent](https://github.com/drbenvincent) in January 2023 " ] }, { "cell_type": "markdown", "id": "closed-frank", "metadata": {}, "source": [ "## References\n", ":::{bibliography}\n", ":filter: docname in docnames\n", ":::" ] }, { "cell_type": "markdown", "id": "0717070c-04aa-4836-ab95-6b3eff0dcaaf", "metadata": {}, "source": [ "## Watermark" ] }, { "cell_type": "code", "execution_count": 4, "id": "sound-calculation", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last updated: Wed Dec 28 2022\n", "\n", "Python implementation: CPython\n", "Python version : 3.11.0\n", "IPython version : 8.7.0\n", "\n", "pytensor: 2.8.11\n", "\n", "pymc : 5.0.1\n", "numpy : 1.24.0\n", "arviz : 0.14.0\n", "pandas : 1.5.2\n", "sys : 3.11.0 | packaged by conda-forge | (main, Oct 25 2022, 06:21:25) [Clang 14.0.4 ]\n", "matplotlib: 3.6.2\n", "\n", "Watermark: 2.3.1\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -n -u -v -iv -w -p pytensor" ] }, { "cell_type": "markdown", "id": "1e4386fc-4de9-4535-a160-d929315633ef", "metadata": {}, "source": [ ":::{include} ../page_footer.md\n", ":::" ] } ], "metadata": { "kernelspec": { "display_name": "pymc_env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" }, "vscode": { "interpreter": { "hash": "d5f0cba85daacbebbd957da1105312a62c58952ca942f7218a10e4aa5f415a19" } } }, "nbformat": 4, "nbformat_minor": 5 }