
A variable is a named piece of information with a data type, that contains data in the
memory, be it in the stack or in the heap. Variables usually have a name and a data
type and they either contain a value or not (optionality). There are naming conventions
for variables and other rules as to what data they can be assigned to based on their
data types.

More info

 Dart Programming - Variables - Tutorialspoin
 Dart Variables - W3School
 Variables and types in Dart - Suragc
 Dart - Variables - GeeksforGeek
 Dart Variables - TutorialKart

Variables

Examples

1

2

3

4

5

6

7

8

9

10

11

12

/*

below are all examples of variables whose value can

be changed at compile and run time

*/

// add 1 to foo

// Bar becomes BarBar now

// baz is now 4.2

var

var

var

 ;

 ;

 ;

 ;

 ;

 ;

foo

bar

baz

=
= +

=
*=

=
= +

10
1

2

1.2
3

foo foo

bar

baz baz

'Bar'

An integer is a value that can be described by a whole number, up to a limit, dictated by
its container variable. An example of an integer is 1, 100, 1000, and so on. Integers can
be either signed or unsigned. A signed integer can be either positive or negative, while
an unsigned integer can only contain positive values, from and including 0 up to the
limit dictated by the data type.

Further reading

 Integer - Wikipedi
 Numbers in Dart - Dart.de
 int class in Dart - api.flutter.de
 Integer in Dart - Educative.i
 Integer class - Pub.dev

Integer

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

// a person's age is a good example of an integer

// you can perform various operators such as

// division on an integer

// multiplication is done through the * operator

// functions or getters can also return

// values of type integer

final age

final dividedByTwo age

final multipliedByTwo age

final lengthOfName

 ;

 ;

 ;

 . ;

=

= /

= *

=

20

2

2

'Foo Bar' length

A string in Dart is text usually surrounded by single quotation marks ‘like so’. If the
string object itself contains single quotation marks such as “let’s”, then it’s usually
surrounded by double quotation marks. Dart recomments that all strings by default be
surrounded by single quotation marks unless there is a good reason for them to not to.
Strings can be compile time constants.

Further reading

 String class - dart:core library - api.dart.de
 Dart Programming - String - Tutorialspoin
 Exploring String methods in Dart - Darshan Kawa
 Working with Strings in Dart/Flutter - FrontBacken
 Dart/Flutter String Functions & Operators - Bezkoder

String

Examples

1

2

3

4

5

6

7

8

9

10

11

// a string is text

/*

it can contain numbers as well but this number

will not be considered an integer anymore

and is from this point on a string, meaning that

you cannot add another integer to it

*/

// so this code will not compile

final myName

final myAge

final invalid myAge

 ;

 ;

 ;

=

=

= +

'Vandad Nahavandipoor'

'20'

30

A double is a double precision floating point value. This is to say that the container of
this type can contain values with decimal points, such as 1.2, or 3.14. Integer values on
the other hand don’t have the capacity to contain a decimal point. Values of type
Double can also be “demoted” or type-cast to a value of type integer and vice versa. In
the case of Integer to Double, the type will be promoted!

Further reading

 Double-precision floating-point format - Wikipedi
 Double-Precision Floating Point - IB
 double class - dart:core librar
 What is a double in Dart? - Educative.i
 Floating-point arithmetic - Wikipedia

Double

Examples

1

2

3

4

5

6

7

8

9

10

11

/*

a double value, or a double precision floating

point value refers to a value that can contain

decimals, in this example, the .2 is the decimal

value after the integer value of 1

*/

// a string cannot be added to a double by default

// compile-error

final fooBar
final plusTwo fooBar
final againPlusTwo fooBar

final invalid fooBar

 ;

 ;

 ;

 ;

=
= +

= +

= +

1.2
2

2.0

'Foo Bar'

Dart is the language that sits behind Flutter, Google’s revolutionary UI framework.
Quoting Dart’s own website: “Dart is a client-optimized language for developing fast
apps on any platform. Its goal is to offer the most productive programming language
for multi-platform development, paired with a flexible execution runtime platform for
app frameworks.”

Further reading

 Dart programming language - dart.de
 A tour of the Dart language - dart.de
 Dart Tutorials - dart.de
 Dart (programming language) - Wikipedi
 Dart packages - pub.dev

Dart

Examples

1

2

3

4

5

6

7

8

9

10

11

12

/*

Dart has many built in features, such as support for

many data types such as integers and doubles

*/

// and also support for functions

// and also function type definitions

// plus many more

final ex1
final ex2

func

typedef MyCallback Function int

 ;

 ;

 () {

}

 ();

=
=

=

1
1.2

void

void

A class is metadata around a type or multiple types. A class can have properties and
methods. Imagine a Person class, a property of this class could be “age” while a
metohd could be “run”. Classes can either be abstract or concrete. Classes can then be
instantiated in order to create objects. An object is therefore a copy of that class in
memory and can be individually modified.

Further reading

 Dart Classes and Object - Javatpoin
 Dart Programming - Classes - Tutorialspoin
 Language samples - dart.de
 Dart - Classes And Objects - GeeksforGeek
 Dart Class - TutorialKart

Class

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

/*

this is an example of a class with 3 properties namely

age, address and name. here the properties are final

meaning that their values cannot be changed after being

assigned to. the class also has a constructor with

the prefix of const

*/

class

this this this

 {

 ;

 ;

 ;

 (. , . , .);

}

Person
String name
String address
int age
Person

final
final
final
const name address age

Keywords are words in a programming language that are reserved for the language
itself. In Dart there are variaty of keywords that are reserved for the language and
shouldn’t be used otherwise as variable names for instance. Some of these words are,
“break”, “false”, “true”, “finally”, “const”, “enum”, “else”, “abstract” and many more which
are documented by the good folks at Google.

Further reading

 Language tour - keywords - dart.de
 Dart keywords - w3add
 Dart Keywords - Javatpoin
 Dart - Keywords - GeeksforGeek
 Keywords (Reserved Words) in Dart - Codesansar

Keywords

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

14

/*

in this case both the words "abstract" and

"class" are keywords, or as some may call them,

reserved words!

*/

// here the word "const" is a keyword

// and here the word "final" is a keyword

abstract

final age

 {

}

 ;

 ;

class

const

Animal

name =

=

'Foo Bar'

32

A constant, or a compile-time constant, is a value whose internals do not change
during the entire execution of the program. An example of a constant value in Dart is
the value “1”, or a constant instance of a class called Person whose first name is “Foo”
and last name is “Bar”. Those values will not change for the entire lifetime of the
program. They can however be changed before compiling the project.

Further reading

 Dart final and const - dart.de
 Compile-time constants and variables - Newbede
 Constants and Variables - Rebu
 Constant (computer programming) - Wikipedi
 Constants in Programming Language - Toppr

Constants

Examples

1

2

3

4

5

6

7

8

9

10

11

/*

foo in this example is a compile-time constant

meaning that its value cannot be changed after

it has been assigned to.

*/

/*

so this code is invalid because

foo is a compile-time constant

*/

// this will not compile

const ;

 ;

foo =

= +

'Foo'

'Bar'foo foo

Final is a variable modifer that makes a variable assignable only once. Notice that final
has nothing to do with constant. A final variable can only be assigned to once, whereas
a constant variable can not only be assigned only once, but also has to be a constant!
For instance, if you read a user’s name from the console into a variable, that value can
be stored into a final variable, but not a constant!

Further reading

 Final and const - dart.de
 Dart - Const And Final Keyword - GeeksforGeek
 Difference between Const and Final in Dart - Jeroen Ouwehan
 Difference Between the const and final keywords - Somyarajsinh
 Difference Between Constant and Final Explained Example

Final

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

/*

this will create an integer variable named

"age" whose value is initially set to 20

and cannot be changed after it has been declared

*/

/*

if you try to change the value of this variable

after it has been assigned to for the first

time, you will receive a compilation error

*/

// this will not compile

final age
final otherAge age

age age

 ;

 ;

 ;

=
= +

= +

20
20

30

A function is a group of lines of code, or even a single line of code, that has a name,
and optionally a return value and arguments. Functions are used for giving contextual
meanings to code that are related to each other which perform a specific task. For
instance, a Person object might have a function called “run” that performs the running
task for that particular person object.

Further reading

 functions - dart.de
 the main function - dart.de
 anonymous functions - dart.de
 Dart Programming - Functions - Tutorialspoin
 Dart function - working with functions in Dart - ZetCode

Functions

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

/*

here is an example of a person class with an empty

function called run, that returns no values (denoted

by the void result type) and takes in an argument

of type double that denotes the speed in kilometers

by which the given person should run when this

function is invoked

*/

// perform the running task here

class {

 () {

 }

}

Person
run doublevoid speedInKilometers

Maps are key value containers, meaning that for a value to be stored inside the map
you need to associate a key to it. The key is then used to retrieve the value. A map or
hash map or dictionary as it may be named in other languages is usually used to store
structured data. Keys of the map need to be hashable and unique. In Dart you can
retrieve a value by key, or just retrieve all the keys or all the values separately.

Further reading

 maps - dart.de
 Dart Programming - Map - Tutorialspoin
 Dart Map - zetcode.co
 Maps in dart - Jay Till
 Dart/Flutter Map, HashMap Tutorial - Bezkoder

Maps

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

/*

personInfo in this case is a Map<Object, Object>

where keys are of type Object and the values

are of type Object as well.

*/

// access the name out of personInfo with its key

final personInfo

final name personInfo

 {

 : ,

 : ,

 : ,

 : ,

};

 [];

=

=

'name'
'age'
'address'
10

'Foo bar'

'dummy'

'name'

20

20

Data types are ways of telling Dart what kind of data stored is stored in the memory.

They make it easier for the programmer and for the computer to understand what they
are dealing with and at the same time you will minimize the risk of calculating invalid
operations such as adding a number to text, an opreation whose result might not be
easily understood by the computer

More info

 Dart - Data Types - GeeksforGeek
 Dart Programming - Data Types - TutorialsPoin
 The Dart type syste
 Dart Data Types - W3School
 Video: Basics of Dart, DataTypes

Data Types

Examples

1

2

3

4

5

6

7

8

9

10

// This is an example of a integer

// this is a string inside single quotation marks

// this is a double precision value

// and this is a list

// we can also have hashmaps

10

3.14

1 2 3

'Vandad Nahavandipoor'

'key1' 'value1' 'key2' 'value2'

[, ,]

{ : , : }

Lists, as their name denote, can contain more than one object at once. Objects are not
named. They are accessible by their index. The first item is always at index 0, item 2 is
at index 1 and so on. That’s why they call lists zero-based, meaning that their indexes
start at 0. A list can contain heterogenous objects, meaning that objects inside the list
don’t necessarily have to be of the same type.

Further reading

 Lists - dart.de
 Dart Programming - Lists - Tutorialspoin
 Dart/Flutter List Tutorial with Examples - BezKode
 List class - dart:core library - Flutter AP
 Dart Lists - W3Schools

Lists

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

14

/*

here is an example of 3 strings placed

inside a list, the list has 3 items. using

the index of 0 you can access 'foo', with the

index of 1 you can get to 'bar' and with

the index of 2 you can get to 'baz'

*/

/*

this grabs the values inside both "names" and

"ages" and flattens them inside the new list

*/

// List<Object>

const
const

const

 [, ,];

 [, ,];

 [,];

names
ages

all

=
=

=

'foo' 'bar' 'baz'
20 30 44

... ...names ages

While a list can contain duplicate items, a set’s job is to filter out duplicate items.
Objects have hash values using which a set determines if two objects are alike. These
hash values are usually integers that custom objects can override and define manually.
Built-in types have hash values that you don’t have to play with in order to have them
work together with sets, objects such as strings and integers for instance.

Further reading

 Sets - dart.de
 Set class - dart:core librar
 Dart Sets - W3School
 Dart Programming - Collection Set - Tutorialspoin
 Dart Sets - Javatpoint

Sets

Examples

1

2

3

4

5

6

7

8

9

10

11

12

13

/*

a set definition starts with curly brackets and ends

with a closing bracket. it cannot contain duplicate values.

duplication of values is defined by their hash values.

*/

// this is not a valid set, and will not compile

// this is not allowed

const

const

 {

 , ,
};

 {

 ,

}

ages

names

=

=

10 20 30

'foo'
'foo'

Arguments are values that are passed to functions in order to give them more
information and context as how they should perform their tasks. An argument might
have a data type and must have a name that the function internally can use in order to
refer to that argument. An argument can optionally specify whether it is a required
argument or not. Required arguments are prefixed with the “required” keyword.

Further reading

 parameters - dart.de
 Dart: Optional Function Parameters - Zaist
 Function arguments - Flutter by exampl
 Dart Optional Parameters - W3School
 Optional Named Parameter - Tutorialspoint

Arguments

Examples

1

2

3

4

5

6

7

8

9

10

11

/*

this function takes in two arguments of type int and

 it returns the result of adding them together, and the

 result is of the same data type as the incoming arguments

*/

// another example of a function, a short one!

int add int value1 int value2
value1 value2

int subtract int value1 int value2 value1 value2

 (,) {

 ;

}

 (,) ;

return +

=> -

Operators are special functions whose names are symbols. Operators can be prefix,
infix or suffix meaning that they can perform operations on data by being specified
before that data (prefix), between two pieces of data (infix) or by appearing after an
object (suffix). Dart comes with its own built-in operators but you are allowed to define
your own operators for existing and new objects.

Further reading

 A tour of the Dart language (Operators) - dart.de
 Dart Programming - Operators - Tutorialspoin
 Dart Operators - W3School
 Operators in Dart - GeeksforGeek
 Dart Operators - Javatpoint

Operators

Examples

1

2

3

4

5

6

7

8

9

10

11

var ;

 ;

 ;

 ;

foo =

= +

= ++

= ++

10

2

/* this is an example of an infix operator that

sits between two values */

// fooPlusTwo = 12

/* this is a prefix operator that first adds 1

to "foo", and then assigns the result to "bar" */

/* this is an example of a suffix operator that

first assigns the value of foo to baz and then

adds 1 to foo */

final fooPlusTwo foo

final bar foo

final baz foo

Dart Flash Cards
version: 1.1 

by: Vandad Nahavandipoor 
covers: Dart 2.14.2

Twitter, LinkedIn, YouTube

https://www.tutorialspoint.com/dart_programming/dart_programming_variables.htm
https://www.w3adda.com/dart-tutorial/dart-variables
https://suragch.medium.com/variables-and-types-in-dart-66a89ad985a6
https://www.geeksforgeeks.org/variables-and-keywords-in-dart/
https://www.tutorialkart.com/dart/dart-variables/
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://dart.dev/guides/language/numbers
https://api.flutter.dev/flutter/dart-core/int-class.html
https://www.educative.io/edpresso/integer-in-dart
https://pub.dev/documentation/quantity/latest/number/Integer-class.html
https://api.dart.dev/stable/2.14.4/dart-core/String-class.html
https://www.tutorialspoint.com/dart_programming/dart_programming_string.htm
https://medium.com/flutter-community/exploring-string-methods-in-dart-324f747b8d15
https://frontbackend.com/dart/working-with-strings-in-dart-flutter
https://www.bezkoder.com/dart-string-methods-operators-examples/
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://www.ibm.com/docs/en/ssw_aix_72/commprogramming/double_prec_fp.html
https://api.dart.dev/stable/2.14.4/dart-core/double-class.html
https://www.educative.io/edpresso/what-is-a-double-in-dart
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://dart.dev
https://dart.dev/guides/language/language-tour
https://dart.dev/tutorials
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://pub.dev
https://www.javatpoint.com/dart-classes-and-object
https://www.tutorialspoint.com/dart_programming/dart_programming_classes.htm
https://dart.dev/samples
https://www.geeksforgeeks.org/dart-classes-and-objects/
https://www.tutorialkart.com/dart/dart-class/
https://dart.dev/guides/language/language-tour#keywords
https://www.w3adda.com/dart-tutorial/dart-keywords
https://www.javatpoint.com/dart-keywords
https://www.geeksforgeeks.org/dart-keywords/
https://www.codesansar.com/dart/keywords.htm
https://dart.dev/guides/language/language-tour#final-and-const
https://newbedev.com/compile-time-constants-and-variables
https://press.rebus.community/programmingfundamentals/chapter/constants-and-variables/
https://en.wikipedia.org/wiki/Constant_(computer_programming)
https://www.toppr.com/guides/computer-science/introduction-to-c/data-types-variables-and-constants/constants-in-programming-language/
https://dart.dev/guides/language/language-tour#final-and-const
https://www.geeksforgeeks.org/dart-const-and-final-keyword/
https://itnext.io/difference-between-const-and-final-in-dart-78c129d0c573
https://flutteragency.com/difference-between-the-const-and-final-keywords/
https://flutter-examples.com/dart-difference-between-constant-and-final/
https://dart.dev/guides/language/language-tour#functions
https://dart.dev/guides/language/language-tour#the-main-function
https://dart.dev/guides/language/language-tour#anonymous-functions
https://www.tutorialspoint.com/dart_programming/dart_programming_functions.htm
https://zetcode.com/dart/function/
https://dart.dev/guides/language/language-tour#maps
https://www.tutorialspoint.com/dart_programming/dart_programming_map.htm
https://zetcode.com/dart/map/
https://medium.com/jay-tillu/maps-in-dart-13ac7154f19
https://www.bezkoder.com/dart-map/
https://www.geeksforgeeks.org/dart-data-types/
https://www.tutorialspoint.com/dart_programming/dart_programming_data_types.htm
https://dart.dev/guides/language/type-system
https://www.w3adda.com/dart-tutorial/dart-data-types
https://www.youtube.com/watch?v=X1I1dRzmO-0
https://dart.dev/guides/language/language-tour#lists
https://www.tutorialspoint.com/dart_programming/dart_programming_lists.htm
https://www.bezkoder.com/dart-list/
https://api.flutter.dev/flutter/dart-core/List-class.html
https://www.w3adda.com/dart-tutorial/dart-lists
https://dart.dev/guides/language/language-tour#sets
https://api.dart.dev/stable/2.14.4/dart-core/Set-class.html
https://www.w3adda.com/dart-tutorial/dart-sets
https://www.tutorialspoint.com/dart_programming/dart_programming_collection_set.htm
https://www.javatpoint.com/dart-sets
https://dart.dev/guides/language/language-tour#parameters
https://zetcode.com/dart/function/
https://flutterbyexample.com/lesson/function-arguments-default-optional-named
https://www.w3adda.com/dart-tutorial/dart-optional-parameters
https://www.tutorialspoint.com/dart_programming/dart_programming_optional_named_parameter.htm
https://dart.dev/guides/language/language-tour#operators
https://www.tutorialspoint.com/dart_programming/dart_programming_operators.htm
https://www.w3adda.com/dart-tutorial/dart-operators
https://www.geeksforgeeks.org/operators-in-dart/
https://www.javatpoint.com/dart-operators
mailto:vandad.np@gmail.com
https://twitter.com/vandadnp
https://linkedin.com/in/vandadnp/
https://youtube.com/user/vandadnp

