# -*- coding: utf-8 -*- import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import numpy as np import math, copy, time class CNNmodel(nn.Module): def __init__(self, input_dim, hidden_dim, num_layer, dropout, gpu=True): super(CNNmodel, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.num_layer = num_layer self.gpu = gpu self.cnn_layer0 = nn.Conv1d(self.input_dim, self.hidden_dim, kernel_size=1, padding=0) self.cnn_layers = [nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=3, padding=1) for i in range(self.num_layer-1)] self.drop = nn.Dropout(dropout) if self.gpu: self.cnn_layer0 = self.cnn_layer0.cuda() for i in range(self.num_layer-1): self.cnn_layers[i] = self.cnn_layers[i].cuda() def forward(self, input_feature): batch_size = input_feature.size(0) seq_len = input_feature.size(1) input_feature = input_feature.transpose(2,1).contiguous() cnn_output = self.cnn_layer0(input_feature) #(b,h,l) cnn_output = self.drop(cnn_output) cnn_output = torch.tanh(cnn_output) for layer in range(self.num_layer-1): cnn_output = self.cnn_layers[layer](cnn_output) cnn_output = self.drop(cnn_output) cnn_output = torch.tanh(cnn_output) cnn_output = cnn_output.transpose(2,1).contiguous() return cnn_output def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) ## (b,h,l,d) * (b,h,d,l) if mask is not None: # scores = scores.masked_fill(mask == 0, -1e9) scores = scores.masked_fill(mask, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn ##(b,h,l,l) * (b,h,l,d) = (b,h,l,d) class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0., max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + autograd.Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) class AttentionModel(nn.Module): "Core encoder is a stack of N layers" def __init__(self, d_input, d_model, d_ff, head, num_layer, dropout): super(AttentionModel, self).__init__() c = copy.deepcopy # attn0 = MultiHeadedAttention(head, d_input, d_model) attn = MultiHeadedAttention(head, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) # position = PositionalEncoding(d_model, dropout) # layer0 = EncoderLayer(d_model, c(attn0), c(ff), dropout) layer = EncoderLayer(d_model, c(attn), c(ff), dropout) self.layers = clones(layer, num_layer) # layerlist = [copy.deepcopy(layer0),] # for _ in range(num_layer-1): # layerlist.append(copy.deepcopy(layer)) # self.layers = nn.ModuleList(layerlist) self.norm = LayerNorm(layer.size) self.posi = PositionalEncoding(d_model, dropout) self.input2model = nn.Linear(d_input, d_model) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." # x: embedding (b,l,we) x = self.posi(self.input2model(x)) for layer in self.layers: x = layer(x, mask) return self.norm(x) class NERmodel(nn.Module): def __init__(self, model_type, input_dim, hidden_dim, num_layer, dropout=0.5, gpu=True, biflag=True): super(NERmodel, self).__init__() self.model_type = model_type if self.model_type == 'lstm': self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layer, batch_first=True, bidirectional=biflag) self.drop = nn.Dropout(dropout) if self.model_type == 'cnn': self.cnn = CNNmodel(input_dim, hidden_dim, num_layer, dropout, gpu) ## attention model if self.model_type == 'transformer': self.attention_model = AttentionModel(d_input=input_dim, d_model=hidden_dim, d_ff=2*hidden_dim, head=4, num_layer=num_layer, dropout=dropout) for p in self.attention_model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, input, mask=None): if self.model_type == 'lstm': hidden = None feature_out, hidden = self.lstm(input, hidden) feature_out_d = self.drop(feature_out) if self.model_type == 'cnn': feature_out_d = self.cnn(input) if self.model_type == 'transformer': feature_out_d = self.attention_model(input, mask) return feature_out_d