import tensorflow as tf from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 model = keras.Sequential( [ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation="relu"), keras.layers.Dense(10, activation="softmax"), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) model.fit(train_images, train_labels, epochs=5) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print("\nTest Accuracy:", test_acc)