Keras implementation of WassersteinGAN.
Sources:
numpy==1.13.3 natsort==5.1.0 matplotlib==2.0.2 opencv_python==3.3.0.10 scipy==1.0.0 tqdm==4.17.0 Keras==2.0.8 parmap==1.5.1 h5py==2.7.0 Theano==0.9.0 or tensorflow==1.3.0
Follow these instructions.
Follow these instructions
CelebA example results
For each image:
- The first 2 rows are generated images
- The last 2 rows are real images
MoG
Results on the unrolled GAN paper to dataset: