Skip to content

Latest commit

 

History

History

WassersteinGAN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Generative Adversarial Networks

Keras implementation of WassersteinGAN.

Sources:

Requirements

python modules

numpy==1.13.3 natsort==5.1.0 matplotlib==2.0.2 opencv_python==3.3.0.10 scipy==1.0.0 tqdm==4.17.0 Keras==2.0.8 parmap==1.5.1 h5py==2.7.0 Theano==0.9.0 or tensorflow==1.3.0

Part 1. Processing the data

Follow these instructions.

Part 2. Running the code

Follow these instructions

Part 3. Example results

CelebA example results

figure figure

For each image:

  • The first 2 rows are generated images
  • The last 2 rows are real images

MoG

Results on the unrolled GAN paper to dataset:

figure