import pandas as pd import tempfile import os import copy from typing import Dict, Tuple import pytrec_eval def trec_eval(qrels: Dict[str, Dict[str, int]], results: Dict[str, Dict[str, float]], k_values: Tuple[int] = (10, 50, 100, 200, 1000)) -> Dict[str, float]: ndcg, _map, recall = {}, {}, {} for k in k_values: ndcg[f"NDCG@{k}"] = 0.0 _map[f"MAP@{k}"] = 0.0 recall[f"Recall@{k}"] = 0.0 map_string = "map_cut." + ",".join([str(k) for k in k_values]) ndcg_string = "ndcg_cut." + ",".join([str(k) for k in k_values]) recall_string = "recall." + ",".join([str(k) for k in k_values]) evaluator = pytrec_eval.RelevanceEvaluator(qrels, {map_string, ndcg_string, recall_string}) scores = evaluator.evaluate(results) for query_id in scores: for k in k_values: ndcg[f"NDCG@{k}"] += scores[query_id]["ndcg_cut_" + str(k)] _map[f"MAP@{k}"] += scores[query_id]["map_cut_" + str(k)] recall[f"Recall@{k}"] += scores[query_id]["recall_" + str(k)] def _normalize(m: dict) -> dict: return {k: round(v / len(scores), 5) for k, v in m.items()} ndcg = _normalize(ndcg) _map = _normalize(_map) recall = _normalize(recall) all_metrics = {} for mt in [ndcg, _map, recall]: all_metrics.update(mt) return all_metrics def get_qrels_file(name): THE_TOPICS = { 'dl19': 'dl19-passage', 'dl20': 'dl20-passage', 'covid': 'beir-v1.0.0-trec-covid-test', 'arguana': 'beir-v1.0.0-arguana-test', 'touche': 'beir-v1.0.0-webis-touche2020-test', 'news': 'beir-v1.0.0-trec-news-test', 'scifact': 'beir-v1.0.0-scifact-test', 'fiqa': 'beir-v1.0.0-fiqa-test', 'scidocs': 'beir-v1.0.0-scidocs-test', 'nfc': 'beir-v1.0.0-nfcorpus-test', 'quora': 'beir-v1.0.0-quora-test', 'dbpedia': 'beir-v1.0.0-dbpedia-entity-test', 'fever': 'beir-v1.0.0-fever-test', 'robust04': 'beir-v1.0.0-robust04-test', 'signal': 'beir-v1.0.0-signal1m-test', } name = THE_TOPICS[name] name = name.replace('-test', '.test') name = 'data/label_file/qrels.' + name + '.txt' return name def remove_duplicate(response): new_response = [] for c in response: if c not in new_response: new_response.append(c) else: print('duplicate') return new_response def clean_response(response: str): new_response = '' for c in response: if not c.isdigit(): new_response += ' ' else: try: new_response += str(int(c)) except: new_response += ' ' new_response = new_response.strip() return new_response class EvalFunction: @staticmethod def receive_responses(rank_results, responses, cut_start=0, cut_end=100): print('receive_responses', len(responses), len(rank_results)) for i in range(len(responses)): response = responses[i] response = clean_response(response) response = [int(x) - 1 for x in response.split()] response = remove_duplicate(response) cut_range = copy.deepcopy(rank_results[i]['hits'][cut_start: cut_end]) original_rank = [tt for tt in range(len(cut_range))] response = [ss for ss in response if ss in original_rank] response = response + [tt for tt in original_rank if tt not in response] for j, x in enumerate(response): rank_results[i]['hits'][j + cut_start] = { 'content': cut_range[x]['content'], 'qid': cut_range[x]['qid'], 'docid': cut_range[x]['docid'], 'rank': cut_range[j]['rank'], 'score': cut_range[j]['score']} return rank_results @staticmethod def write_file(rank_results, file): print('write_file') with open(file, 'w') as f: for i in range(len(rank_results)): rank = 1 hits = rank_results[i]['hits'] for hit in hits: f.write(f"{hit['qid']} Q0 {hit['docid']} {rank} {hit['score']} rank\n") rank += 1 return True @staticmethod def trunc(qrels, run): qrels = get_qrels_file(qrels) # print(qrels) run = pd.read_csv(run, delim_whitespace=True, header=None) qrels = pd.read_csv(qrels, delim_whitespace=True, header=None) run[0] = run[0].astype(str) qrels[0] = qrels[0].astype(str) qrels = qrels[qrels[0].isin(run[0])] temp_file = tempfile.NamedTemporaryFile(delete=False).name qrels.to_csv(temp_file, sep='\t', header=None, index=None) return temp_file @staticmethod def main(args_qrel, args_run): args_qrel = EvalFunction.trunc(args_qrel, args_run) assert os.path.exists(args_qrel) assert os.path.exists(args_run) with open(args_qrel, 'r') as f_qrel: qrel = pytrec_eval.parse_qrel(f_qrel) with open(args_run, 'r') as f_run: run = pytrec_eval.parse_run(f_run) all_metrics = trec_eval(qrel, run, k_values=(1, 5, 10)) print(all_metrics) return all_metrics if __name__ == '__main__': EvalFunction.main('dl19', 'ranking_results_file')