#ifndef __GGML_EXTEND_HPP__ #define __GGML_EXTEND_HPP__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml-cpu.h" #include "ggml.h" #include "model.h" #ifdef SD_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef SD_USE_METAL #include "ggml-metal.h" #endif #ifdef SD_USE_VULKAN #include "ggml-vulkan.h" #endif #ifdef SD_USE_SYCL #include "ggml-sycl.h" #endif #include "rng.hpp" #include "util.h" #define EPS 1e-05f #ifndef __STATIC_INLINE__ #define __STATIC_INLINE__ static inline #endif __STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) { (void)level; (void)user_data; fputs(text, stderr); fflush(stderr); } __STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr rng) { uint32_t n = (uint32_t)ggml_nelements(tensor); std::vector random_numbers = rng->randn(n); for (uint32_t i = 0; i < n; i++) { ggml_set_f32_1d(tensor, i, random_numbers[i]); } } // set tensor[i, j, k, l] // set tensor[l] // set tensor[k, l] // set tensor[j, k, l] __STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value; } __STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { if (tensor->buffer != NULL) { float value; ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float)); return value; } GGML_ASSERT(tensor->nb[0] == sizeof(float)); return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } __STATIC_INLINE__ int ggml_tensor_get_i32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { if (tensor->buffer != NULL) { float value; ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(int)); return value; } GGML_ASSERT(tensor->nb[0] == sizeof(int)); return *(int*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } __STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]); } static struct ggml_tensor* get_tensor_from_graph(struct ggml_cgraph* gf, const char* name) { struct ggml_tensor* res = NULL; for (int i = 0; i < ggml_graph_n_nodes(gf); i++) { struct ggml_tensor* node = ggml_graph_node(gf, i); // printf("%d, %s \n", i, ggml_get_name(node)); if (strcmp(ggml_get_name(node), name) == 0) { res = node; break; } } return res; } __STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false, const char* mark = "") { printf("%s (%s): shape(%zu, %zu, %zu, %zu)\n", mark, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); fflush(stdout); if (shape_only) { return; } int range = 3; for (int i = 0; i < tensor->ne[3]; i++) { if (i >= range && i + range < tensor->ne[3]) { continue; } for (int j = 0; j < tensor->ne[2]; j++) { if (j >= range && j + range < tensor->ne[2]) { continue; } for (int k = 0; k < tensor->ne[1]; k++) { if (k >= range && k + range < tensor->ne[1]) { continue; } for (int l = 0; l < tensor->ne[0]; l++) { if (l >= range && l + range < tensor->ne[0]) { continue; } if (tensor->type == GGML_TYPE_F32) { printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i)); } else if (tensor->type == GGML_TYPE_F16) { printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i)); } else if (tensor->type == GGML_TYPE_I32) { printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_i32(tensor, l, k, j, i)); } fflush(stdout); } } } } } __STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { LOG_ERROR("failed to open '%s'", file_path.c_str()); return NULL; } int32_t n_dims; int32_t length; int32_t ttype; file.read(reinterpret_cast(&n_dims), sizeof(n_dims)); file.read(reinterpret_cast(&length), sizeof(length)); file.read(reinterpret_cast(&ttype), sizeof(ttype)); if (file.eof()) { LOG_ERROR("incomplete file '%s'", file_path.c_str()); return NULL; } int32_t nelements = 1; int32_t ne[4] = {1, 1, 1, 1}; for (int i = 0; i < n_dims; ++i) { file.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); file.read(&name[0], length); ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]); const size_t bpe = ggml_type_size(ggml_type(ttype)); file.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); return tensor; } // __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) { // std::string file_name_ = file_name + ".tensor"; // std::string name_ = name; // std::ofstream file("./" + file_name_, std::ios::binary); // file.write(reinterpret_cast(&tensor->n_dims), sizeof(tensor->n_dims)); // int len = (int)name_.size(); // file.write(reinterpret_cast(&len), sizeof(len)); // int ttype = (int)tensor->type; // file.write(reinterpret_cast(&ttype), sizeof(ttype)); // for (int i = 0; i < tensor->n_dims; ++i) { // int ne_ = (int) tensor->ne[i]; // file.write(reinterpret_cast(&ne_), sizeof(ne_)); // } // file.write(&name_[0], len); // char* data = nullptr; // file.write((char*)tensor->data, ggml_nbytes(tensor)); // file.close(); // } __STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) { if (dst->type == src->type) { dst->nb[0] = src->nb[0]; dst->nb[1] = src->nb[1]; dst->nb[2] = src->nb[2]; dst->nb[3] = src->nb[3]; memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst)); return; } struct ggml_init_params params; params.mem_size = 10 * 1024 * 1024; // for padding params.mem_buffer = NULL; params.no_alloc = false; struct ggml_context* ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return; } ggml_tensor* final = ggml_cpy(ctx, src, dst); struct ggml_cgraph* graph = ggml_new_graph(ctx); ggml_build_forward_expand(graph, final); ggml_graph_compute_with_ctx(ctx, graph, 1); ggml_free(ctx); } __STATIC_INLINE__ float sigmoid(float x) { return 1 / (1.0f + expf(-x)); } // SPECIAL OPERATIONS WITH TENSORS __STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); uint8_t* image_data = (uint8_t*)malloc(width * height * channels); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_tensor_get_f32(input, ix, iy, k); *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); } } } return image_data; } __STATIC_INLINE__ uint8_t* sd_tensor_to_mul_image(struct ggml_tensor* input, int idx) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); uint8_t* image_data = (uint8_t*)malloc(width * height * channels); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_tensor_get_f32(input, ix, iy, k, idx); *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); } } } return image_data; } __STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data, struct ggml_tensor* output, bool scale = true) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = *(image_data + iy * width * channels + ix * channels + k); if (scale) { value /= 255.f; } ggml_tensor_set_f32(output, value, ix, iy, k); } } } } __STATIC_INLINE__ void sd_mul_images_to_tensor(const uint8_t* image_data, struct ggml_tensor* output, int idx, float* mean = NULL, float* std = NULL) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { int value = *(image_data + iy * width * channels + ix * channels + k); float pixel_val = value / 255.0f; if (mean != NULL && std != NULL) pixel_val = (pixel_val - mean[k]) / std[k]; ggml_tensor_set_f32(output, pixel_val, ix, iy, k, idx); } } } } __STATIC_INLINE__ void sd_image_f32_to_tensor(const float* image_data, struct ggml_tensor* output, bool scale = true) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { int value = *(image_data + iy * width * channels + ix * channels + k); if (scale) { value /= 255.f; } ggml_tensor_set_f32(output, value, ix, iy, k); } } } } __STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_tensor_get_f32(input, ix + x, iy + y, k); ggml_tensor_set_f32(output, value, ix, iy, k); } } } } // unclamped -> expects x in the range [0-1] __STATIC_INLINE__ float ggml_smootherstep_f32(const float x) { GGML_ASSERT(x >= 0.f && x <= 1.f); return x * x * x * (x * (6.0f * x - 15.0f) + 10.0f); } __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y, int overlap) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; int64_t img_width = output->ne[0]; int64_t img_height = output->ne[1]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float new_value = ggml_tensor_get_f32(input, ix, iy, k); if (overlap > 0) { // blend colors in overlapped area float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k); const float x_f_0 = (x > 0) ? ix / float(overlap) : 1; const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1; const float y_f_0 = (y > 0) ? iy / float(overlap) : 1; const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1; const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f); const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f); ggml_tensor_set_f32( output, old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f), x + ix, y + iy, k); } else { ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k); } } } } } __STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) { float mean = 0.0f; int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { mean += data[i] / nelements * 1.0f; } return mean; } // a = a+b __STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) { GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); int64_t nelements = ggml_nelements(a); float* vec_a = (float*)a->data; float* vec_b = (float*)b->data; for (int i = 0; i < nelements; i++) { vec_a[i] = vec_a[i] + vec_b[i]; } } __STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { data[i] = data[i] * scale; } } __STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val < min ? min : (val > max ? max : val); } } __STATIC_INLINE__ struct ggml_tensor* ggml_tensor_concat(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int dim) { int64_t ne[GGML_MAX_DIMS]; for (int d = 0; d < GGML_MAX_DIMS; ++d) { if (d == dim) { ne[d] = a->ne[d] + b->ne[d]; continue; } GGML_ASSERT(a->ne[d] == b->ne[d]); ne[d] = a->ne[d]; } struct ggml_tensor* result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); int64_t o[4] = {0, 0, 0, 0}; o[dim] = a->ne[dim]; float v; for (int i3 = 0; i3 < result->ne[3]; i3++) { for (int i2 = 0; i2 < result->ne[2]; i2++) { for (int i1 = 0; i1 < result->ne[1]; i1++) { for (int i0 = 0; i0 < result->ne[0]; i0++) { if (i0 < a->ne[0] && i1 < a->ne[1] && i2 < a->ne[2] && i3 < a->ne[3]) { v = ggml_tensor_get_f32(a, i0, i1, i2, i3); } else { v = ggml_tensor_get_f32(b, i0 - o[0], i1 - o[1], i2 - o[2], i3 - o[3]); } ggml_tensor_set_f32(result, v, i0, i1, i2, i3); } } } } return result; } // convert values from [0, 1] to [-1, 1] __STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val * 2.0f - 1.0f; } } // convert values from [-1, 1] to [0, 1] __STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = (val + 1.0f) * 0.5f; } } typedef std::function on_tile_process; // Tiling __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) { int input_width = (int)input->ne[0]; int input_height = (int)input->ne[1]; int output_width = (int)output->ne[0]; int output_height = (int)output->ne[1]; GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2 int tile_overlap = (int32_t)(tile_size * tile_overlap_factor); int non_tile_overlap = tile_size - tile_overlap; struct ggml_init_params params = {}; params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk params.mem_size += 3 * ggml_tensor_overhead(); params.mem_buffer = NULL; params.no_alloc = false; LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); // draft context struct ggml_context* tiles_ctx = ggml_init(params); if (!tiles_ctx) { LOG_ERROR("ggml_init() failed"); return; } // tiling ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1); ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1); on_processing(input_tile, NULL, true); int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap); LOG_INFO("processing %i tiles", num_tiles); pretty_progress(1, num_tiles, 0.0f); int tile_count = 1; bool last_y = false, last_x = false; float last_time = 0.0f; for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) { if (y + tile_size >= input_height) { y = input_height - tile_size; last_y = true; } for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) { if (x + tile_size >= input_width) { x = input_width - tile_size; last_x = true; } int64_t t1 = ggml_time_ms(); ggml_split_tensor_2d(input, input_tile, x, y); on_processing(input_tile, output_tile, false); ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale); int64_t t2 = ggml_time_ms(); last_time = (t2 - t1) / 1000.0f; pretty_progress(tile_count, num_tiles, last_time); tile_count++; } last_x = false; } if (tile_count < num_tiles) { pretty_progress(num_tiles, num_tiles, last_time); } ggml_free(tiles_ctx); } __STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx, struct ggml_tensor* a) { const float eps = 1e-6f; // default eps parameter return ggml_group_norm(ctx, a, 32, eps); } __STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b) { x = ggml_mul_mat(ctx, w, x); if (b != NULL) { x = ggml_add(ctx, x, b); } return x; } // w: [OC,IC, KH, KW] // x: [N, IC, IH, IW] // b: [OC,] // result: [N, OC, OH, OW] __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s0 = 1, int s1 = 1, int p0 = 0, int p1 = 0, int d0 = 1, int d1 = 1) { x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1); if (b != NULL) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); // b = ggml_repeat(ctx, b, x); x = ggml_add(ctx, x, b); } return x; } // w: [OC,IC, KD, 1 * 1] // x: [N, IC, IH, IW] // b: [OC,] // result: [N, OC, OH, OW] __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1_bak(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s2 = 1, int p2 = 1, int d2 = 1) { GGML_ASSERT(w->ne[0] == 1); // timesteps = x.shape[0] // x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) // x = conv3d(x) // return rearrange(x, "b c t h w -> (b t) c h w") int64_t T = x->ne[3]; int64_t B = x->ne[3] / T; int64_t C = x->ne[2]; int64_t H = x->ne[1]; int64_t W = x->ne[0]; x = ggml_reshape_4d(ctx, x, W * H, C, T, B); // (b t) c h w -> b t c (h w) x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b t c (h w) -> b c t (h w) x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [B, OC, T, OH * OW] if (b != NULL) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); x = ggml_add(ctx, x, b); } x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w) x = ggml_reshape_4d(ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w return x; // [B*T, OC, OH, OW] } // w: [OC,IC, KD, 1 * 1] // x: [N, IC, ID, IH*IW] // b: [OC,] // result: [N, OC, OD, OH*OW] __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s2 = 1, int p2 = 1, int d2 = 1) { x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [N, OC, T, OH * OW] if (b != NULL) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); x = ggml_add(ctx, x, b); } return x; // [N, OC, T, OH * OW] } // qkv: [N, L, 3*C] // return: ([N, L, C], [N, L, C], [N, L, C]) __STATIC_INLINE__ std::vector split_qkv(struct ggml_context* ctx, struct ggml_tensor* qkv) { qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); // [N, L, 3, C] qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); // [3, N, L, C] int64_t offset = qkv->nb[2] * qkv->ne[2]; auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); // [N, L, C] auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); // [N, L, C] auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); // [N, L, C] return {q, k, v}; } // q: [N * n_head, n_token, d_head] // k: [N * n_head, n_k, d_head] // v: [N * n_head, d_head, n_k] // return: [N * n_head, n_token, d_head] __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx, struct ggml_tensor* q, struct ggml_tensor* k, struct ggml_tensor* v, bool mask = false) { #if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL) struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head] #else float d_head = (float)q->ne[0]; struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k] kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head)); if (mask) { kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); } kq = ggml_soft_max_inplace(ctx, kq); struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head] #endif return kqv; } // q: [N, L_q, C] or [N*n_head, L_q, d_head] // k: [N, L_k, C] or [N*n_head, L_k, d_head] // v: [N, L_k, C] or [N, L_k, n_head, d_head] // return: [N, L_q, C] __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx, struct ggml_tensor* q, struct ggml_tensor* k, struct ggml_tensor* v, int64_t n_head, struct ggml_tensor* mask = NULL, bool diag_mask_inf = false, bool skip_reshape = false, bool flash_attn = false) { int64_t L_q; int64_t L_k; int64_t C; int64_t N; int64_t d_head; if (!skip_reshape) { L_q = q->ne[1]; L_k = k->ne[1]; C = q->ne[0]; N = q->ne[2]; d_head = C / n_head; q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); // [N, L_q, n_head, d_head] q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, L_q, d_head] q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); // [N * n_head, L_q, d_head] k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head] k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, L_k, d_head] k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head] v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head] } else { L_q = q->ne[1]; L_k = k->ne[1]; d_head = v->ne[0]; N = v->ne[3]; C = d_head * n_head; } float scale = (1.0f / sqrt((float)d_head)); // if (flash_attn) { // LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N); // } // is there anything oddly shaped?? ping Green-Sky if you can trip this assert GGML_ASSERT(((L_k % 256 == 0) && L_q == L_k) || !(L_k % 256 == 0)); bool can_use_flash_attn = true; can_use_flash_attn = can_use_flash_attn && L_k % 256 == 0; can_use_flash_attn = can_use_flash_attn && d_head % 64 == 0; // double check // cuda max d_head seems to be 256, cpu does seem to work with 512 can_use_flash_attn = can_use_flash_attn && d_head <= 256; // double check if (mask != nullptr) { // TODO(Green-Sky): figure out if we can bend t5 to work too can_use_flash_attn = can_use_flash_attn && mask->ne[2] == 1; can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1; } // TODO(Green-Sky): more pad or disable for funny tensor shapes ggml_tensor* kqv = nullptr; // GGML_ASSERT((flash_attn && can_use_flash_attn) || !flash_attn); if (can_use_flash_attn && flash_attn) { // LOG_DEBUG("using flash attention"); k = ggml_cast(ctx, k, GGML_TYPE_F16); v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3)); // [N, n_head, L_k, d_head] v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head] v = ggml_cast(ctx, v, GGML_TYPE_F16); kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0, 0); ggml_flash_attn_ext_set_prec(kqv, GGML_PREC_F32); // kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_k, kqv->nb[1], kqv->nb[2], 0); kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0); } else { v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, L_k] v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); // [N * n_head, d_head, L_k] auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k] kq = ggml_scale_inplace(ctx, kq, scale); if (mask) { kq = ggml_add(ctx, kq, mask); } if (diag_mask_inf) { kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); } kq = ggml_soft_max_inplace(ctx, kq); kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head] kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N); // [N, n_head, L_q, d_head] kqv = ggml_permute(ctx, kqv, 0, 2, 1, 3); // [N, L_q, n_head, d_head] } kqv = ggml_cont(ctx, kqv); kqv = ggml_reshape_3d(ctx, kqv, d_head * n_head, L_q, N); // [N, L_q, C] return kqv; } __STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, float eps = EPS) { x = ggml_norm(ctx, x, eps); if (w != NULL) { x = ggml_mul(ctx, x, w); if (b != NULL) { x = ggml_add(ctx, x, b); } } return x; } __STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int num_groups = 32) { if (ggml_n_dims(x) >= 3 && w != NULL && b != NULL) { w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1); b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); } const float eps = 1e-6f; // default eps parameter x = ggml_group_norm(ctx, x, num_groups, eps); if (w != NULL && b != NULL) { x = ggml_mul(ctx, x, w); // b = ggml_repeat(ctx, b, x); x = ggml_add(ctx, x, b); } return x; } __STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) { #if defined(SD_USE_CUBLAS) || defined(SD_USE_SYCL) if (!ggml_backend_is_cpu(backend)) { ggml_backend_tensor_get_async(backend, tensor, data, offset, size); ggml_backend_synchronize(backend); } else { ggml_backend_tensor_get(tensor, data, offset, size); } #else ggml_backend_tensor_get(tensor, data, offset, size); #endif } __STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) { GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16); float value; if (tensor->type == GGML_TYPE_F32) { ggml_backend_tensor_get(tensor, &value, 0, sizeof(value)); } else { // GGML_TYPE_F16 ggml_fp16_t f16_value; ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value)); value = ggml_fp16_to_fp32(f16_value); } return value; } __STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx, const std::vector& vec) { struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size()); memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); return t; } __STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx, const std::vector& vec) { struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size()); memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); return t; } __STATIC_INLINE__ std::vector arange(float start, float end, float step = 1.f) { std::vector result; for (float value = start; value < end; value += step) { result.push_back(value); } return result; } // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151 __STATIC_INLINE__ std::vector timestep_embedding(std::vector timesteps, int dim, int max_period = 10000) { // timesteps: [N,] // embedding: [N, dim] size_t N = timesteps.size(); int acutual_dim = dim; if (dim % 2 != 0) { acutual_dim = dim + 1; } std::vector embedding(N * acutual_dim, 0.f); int half = dim / 2; std::vector freqs(half); for (int i = 0; i < half; ++i) { freqs[i] = (float)std::exp(-std::log(max_period) * i / half); } for (int i = 0; i < N; ++i) { for (int j = 0; j < half; ++j) { float arg = timesteps[i] * freqs[j]; embedding[i * acutual_dim + j] = std::cos(arg); embedding[i * acutual_dim + j + half] = std::sin(arg); } } return embedding; } __STATIC_INLINE__ void set_timestep_embedding(std::vector timesteps, struct ggml_tensor* embedding, int dim, int max_period = 10000) { std::vector embedding_vec = timestep_embedding(timesteps, dim, max_period); memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); } __STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx, std::vector timesteps, int dim, int max_period = 10000) { // timesteps: [N,] // embedding: [N, dim] std::vector embedding_vec = timestep_embedding(timesteps, dim, max_period); int acutual_dim = dim; if (dim % 2 != 0) { acutual_dim = dim + 1; } struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps.size()); if (embedding->data != NULL) { memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); } else { ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding)); } return embedding; } __STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding( struct ggml_context* ctx, struct ggml_tensor* timesteps, int dim, int max_period = 10000, float time_factor = 1.0f) { timesteps = ggml_scale(ctx, timesteps, time_factor); return ggml_timestep_embedding(ctx, timesteps, dim, max_period); } __STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) { size_t num = 0; for (ggml_tensor* t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { num++; } return num; } /* SDXL with LoRA requires more space */ #define MAX_PARAMS_TENSOR_NUM 15360 #define MAX_GRAPH_SIZE 15360 struct GGMLRunner { protected: typedef std::function get_graph_cb_t; struct ggml_context* params_ctx = NULL; ggml_backend_buffer_t params_buffer = NULL; struct ggml_context* compute_ctx = NULL; struct ggml_gallocr* compute_allocr = NULL; std::map backend_tensor_data_map; ggml_backend_t backend = NULL; void alloc_params_ctx() { struct ggml_init_params params; params.mem_size = static_cast(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead()); params.mem_buffer = NULL; params.no_alloc = true; params_ctx = ggml_init(params); GGML_ASSERT(params_ctx != NULL); } void free_params_ctx() { if (params_ctx != NULL) { ggml_free(params_ctx); params_ctx = NULL; } } void alloc_compute_ctx() { struct ggml_init_params params; params.mem_size = static_cast(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead()); params.mem_buffer = NULL; params.no_alloc = true; compute_ctx = ggml_init(params); GGML_ASSERT(compute_ctx != NULL); } void free_compute_ctx() { if (compute_ctx != NULL) { ggml_free(compute_ctx); compute_ctx = NULL; } } bool alloc_compute_buffer(get_graph_cb_t get_graph) { if (compute_allocr != NULL) { return true; } reset_compute_ctx(); struct ggml_cgraph* gf = get_graph(); backend_tensor_data_map.clear(); compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); if (!ggml_gallocr_reserve(compute_allocr, gf)) { // failed to allocate the compute buffer LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str()); free_compute_buffer(); return false; } // compute the required memory size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0); LOG_DEBUG("%s compute buffer size: %.2f MB(%s)", get_desc().c_str(), compute_buffer_size / 1024.0 / 1024.0, ggml_backend_is_cpu(backend) ? "RAM" : "VRAM"); return true; } void cpy_data_to_backend_tensor() { for (auto& kv : backend_tensor_data_map) { auto tensor = kv.first; auto data = kv.second; ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor)); } backend_tensor_data_map.clear(); } public: virtual std::string get_desc() = 0; GGMLRunner(ggml_backend_t backend) : backend(backend) { alloc_params_ctx(); } virtual ~GGMLRunner() { free_params_buffer(); free_compute_buffer(); free_params_ctx(); free_compute_ctx(); } void reset_compute_ctx() { free_compute_ctx(); alloc_compute_ctx(); } bool alloc_params_buffer() { size_t num_tensors = ggml_tensor_num(params_ctx); params_buffer = ggml_backend_alloc_ctx_tensors(params_ctx, backend); if (params_buffer == NULL) { LOG_ERROR("%s alloc params backend buffer failed, num_tensors = %i", get_desc().c_str(), num_tensors); return false; } size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer); LOG_DEBUG("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)", get_desc().c_str(), params_buffer_size / (1024.0 * 1024.0), ggml_backend_is_cpu(backend) ? "RAM" : "VRAM", num_tensors); // printf("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)\n", // get_desc().c_str(), // params_buffer_size / (1024.0 * 1024.0), // ggml_backend_is_cpu(backend) ? "RAM" : "VRAM", // num_tensors); return true; } void free_params_buffer() { if (params_buffer != NULL) { ggml_backend_buffer_free(params_buffer); params_buffer = NULL; } } size_t get_params_buffer_size() { if (params_buffer != NULL) { return ggml_backend_buffer_get_size(params_buffer); } return 0; } void free_compute_buffer() { if (compute_allocr != NULL) { ggml_gallocr_free(compute_allocr); compute_allocr = NULL; } } // do copy after alloc graph void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) { backend_tensor_data_map[tensor] = data; } struct ggml_tensor* to_backend(struct ggml_tensor* tensor) { GGML_ASSERT(compute_ctx != NULL); if (tensor == NULL) { return NULL; } // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(backend) && (tensor->buffer == NULL || ggml_backend_buffer_is_host(tensor->buffer))) { // pass input tensors to gpu memory auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor); set_backend_tensor_data(backend_tensor, tensor->data); return backend_tensor; } else { return tensor; } } void compute(get_graph_cb_t get_graph, int n_threads, bool free_compute_buffer_immediately = true, struct ggml_tensor** output = NULL, struct ggml_context* output_ctx = NULL) { alloc_compute_buffer(get_graph); reset_compute_ctx(); struct ggml_cgraph* gf = get_graph(); GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf)); cpy_data_to_backend_tensor(); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef SD_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif ggml_backend_graph_compute(backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif if (output != NULL) { auto result = ggml_graph_node(gf, -1); if (*output == NULL && output_ctx != NULL) { *output = ggml_dup_tensor(output_ctx, result); } if (*output != NULL) { ggml_backend_tensor_get_and_sync(backend, result, (*output)->data, 0, ggml_nbytes(*output)); } } if (free_compute_buffer_immediately) { free_compute_buffer(); } } }; class GGMLBlock { protected: typedef std::unordered_map ParameterMap; typedef std::unordered_map> GGMLBlockMap; GGMLBlockMap blocks; ParameterMap params; void init_blocks(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { for (auto& pair : blocks) { auto& block = pair.second; block->init(ctx, tensor_types, prefix + pair.first); } } virtual void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") {} public: void init(struct ggml_context* ctx, std::map& tensor_types, std::string prefix = "") { if (prefix.size() > 0) { prefix = prefix + "."; } init_blocks(ctx, tensor_types, prefix); init_params(ctx, tensor_types, prefix); } size_t get_params_num() { size_t num_tensors = params.size(); for (auto& pair : blocks) { auto& block = pair.second; num_tensors += block->get_params_num(); } return num_tensors; }; size_t get_params_mem_size() { size_t mem_size = 0; for (auto& pair : blocks) { auto& block = pair.second; mem_size += block->get_params_mem_size(); } for (auto& pair : params) { mem_size += ggml_nbytes(pair.second); } return mem_size; } void get_param_tensors(std::map& tensors, std::string prefix = "") { if (prefix.size() > 0) { prefix = prefix + "."; } for (auto& pair : blocks) { auto& block = pair.second; block->get_param_tensors(tensors, prefix + pair.first); } for (auto& pair : params) { struct ggml_tensor* param = pair.second; tensors[prefix + pair.first] = pair.second; } } }; class UnaryBlock : public GGMLBlock { public: virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) = 0; }; class Linear : public UnaryBlock { protected: int64_t in_features; int64_t out_features; bool bias; bool force_f32; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; if (in_features % ggml_blck_size(wtype) != 0 || force_f32) { wtype = GGML_TYPE_F32; } params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_features); } } public: Linear(int64_t in_features, int64_t out_features, bool bias = true, bool force_f32 = false) : in_features(in_features), out_features(out_features), bias(bias), force_f32(force_f32) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = NULL; if (bias) { b = params["bias"]; } return ggml_nn_linear(ctx, x, w, b); } }; class Embedding : public UnaryBlock { protected: int64_t embedding_dim; int64_t num_embeddings; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings); } public: Embedding(int64_t num_embeddings, int64_t embedding_dim) : embedding_dim(embedding_dim), num_embeddings(num_embeddings) { } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* input_ids) { // input_ids: [N, n_token] auto weight = params["weight"]; // There are issues with ggml batch inference, so we are expanding it here first. // TODO: fix ggml batch inference int64_t n = input_ids->ne[1]; input_ids = ggml_reshape_1d(ctx, input_ids, input_ids->ne[0] * input_ids->ne[1]); input_ids = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]); auto embedding = ggml_get_rows(ctx, weight, input_ids); embedding = ggml_reshape_3d(ctx, embedding, embedding->ne[0], embedding->ne[1] / n, n); // [N, n_token, embedding_dim] return embedding; } }; class Conv2d : public UnaryBlock { protected: int64_t in_channels; int64_t out_channels; std::pair kernel_size; std::pair stride; std::pair padding; std::pair dilation; bool bias; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16; params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; // (tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); } } public: Conv2d(int64_t in_channels, int64_t out_channels, std::pair kernel_size, std::pair stride = {1, 1}, std::pair padding = {0, 0}, std::pair dilation = {1, 1}, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = NULL; if (bias) { b = params["bias"]; } return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first); } }; class Conv3dnx1x1 : public UnaryBlock { protected: int64_t in_channels; int64_t out_channels; int64_t kernel_size; int64_t stride; int64_t padding; int64_t dilation; bool bias; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16; params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d if (bias) { enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); } } public: Conv3dnx1x1(int64_t in_channels, int64_t out_channels, int64_t kernel_size, int64_t stride = 1, int64_t padding = 0, int64_t dilation = 1, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} // x: [N, IC, ID, IH*IW] // result: [N, OC, OD, OH*OW] struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = NULL; if (bias) { b = params["bias"]; } return ggml_nn_conv_3d_nx1x1(ctx, x, w, b, stride, padding, dilation); } }; class LayerNorm : public UnaryBlock { protected: int64_t normalized_shape; float eps; bool elementwise_affine; bool bias; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { if (elementwise_affine) { enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); } } } public: LayerNorm(int64_t normalized_shape, float eps = 1e-05f, bool elementwise_affine = true, bool bias = true) : normalized_shape(normalized_shape), eps(eps), elementwise_affine(elementwise_affine), bias(bias) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = NULL; struct ggml_tensor* b = NULL; if (elementwise_affine) { w = params["weight"]; if (bias) { b = params["bias"]; } } return ggml_nn_layer_norm(ctx, x, w, b, eps); } }; class GroupNorm : public GGMLBlock { protected: int64_t num_groups; int64_t num_channels; float eps; bool affine; void init_params(struct ggml_context* ctx, std::map& tensor_types, const std::string prefix = "") { if (affine) { enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; enum ggml_type bias_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32; params["weight"] = ggml_new_tensor_1d(ctx, wtype, num_channels); params["bias"] = ggml_new_tensor_1d(ctx, bias_wtype, num_channels); } } public: GroupNorm(int64_t num_groups, int64_t num_channels, float eps = 1e-05f, bool affine = true) : num_groups(num_groups), num_channels(num_channels), eps(eps), affine(affine) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = NULL; struct ggml_tensor* b = NULL; if (affine) { w = params["weight"]; b = params["bias"]; } return ggml_nn_group_norm(ctx, x, w, b, num_groups); } }; class GroupNorm32 : public GroupNorm { public: GroupNorm32(int64_t num_channels) : GroupNorm(32, num_channels, 1e-06f) {} }; class MultiheadAttention : public GGMLBlock { protected: int64_t embed_dim; int64_t n_head; std::string q_proj_name; std::string k_proj_name; std::string v_proj_name; std::string out_proj_name; public: MultiheadAttention(int64_t embed_dim, int64_t n_head, bool qkv_proj_bias = true, bool out_proj_bias = true, std::string q_proj_name = "q_proj", std::string k_proj_name = "k_proj", std::string v_proj_name = "v_proj", std::string out_proj_name = "out_proj") : embed_dim(embed_dim), n_head(n_head), q_proj_name(q_proj_name), k_proj_name(k_proj_name), v_proj_name(v_proj_name), out_proj_name(out_proj_name) { blocks[q_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); blocks[k_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); blocks[v_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); blocks[out_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, out_proj_bias)); } // x: [N, n_token, embed_dim] struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = false) { auto q_proj = std::dynamic_pointer_cast(blocks[q_proj_name]); auto k_proj = std::dynamic_pointer_cast(blocks[k_proj_name]); auto v_proj = std::dynamic_pointer_cast(blocks[v_proj_name]); auto out_proj = std::dynamic_pointer_cast(blocks[out_proj_name]); struct ggml_tensor* q = q_proj->forward(ctx, x); struct ggml_tensor* k = k_proj->forward(ctx, x); struct ggml_tensor* v = v_proj->forward(ctx, x); x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, mask); // [N, n_token, embed_dim] x = out_proj->forward(ctx, x); // [N, n_token, embed_dim] return x; } }; #endif // __GGML_EXTEND__HPP__