function [D] = spm_KL_cat(Q,P) % KL divergence between two categorical distributions % FORMAT [D] = spm_KL_cat(Q,P) % % Calculates KL(Q||P) = wrt Q between two categorical % distributions Q and P % % If supplied with arrays, the KL divergence will be summed over the first % dimension. The arrays can be normalised (c.f., Dirichlet parameters). % % See also: spm_kl_dirichlet.m (for row vectors) %__________________________________________________________________________ % Karl Friston % Copyright (C) 2022 Wellcome Centre for Human Neuroimaging % ensure sum to one constraint over first mention %-------------------------------------------------------------------------- Q = spm_norm(Q(:,:)); P = spm_norm(P(:,:)); % KL divergence %-------------------------------------------------------------------------- D = sum( sum(Q.*(spm_log(Q) - spm_log(P))) ); function A = spm_norm(A) % normalisation of a probability transition matrix (columns) %-------------------------------------------------------------------------- A = bsxfun(@rdivide,A,sum(A,1)); A(isnan(A)) = 1/size(A,1); function A = spm_log(A) % log of numeric array plus a small constant %-------------------------------------------------------------------------- A = log(A); A(isinf(A)) = -32;