function [exp_r,xp,r_samp,g_post] = spm_BMS_gibbs (lme, alpha0, Nsamp) % Bayesian model selection for group studies using Gibbs sampling % FORMAT [exp_r,xp,r_samp,g_post] = spm_BMS_gibbs (lme, alpha0, Nsamp) % % INPUT: % lme - array of log model evidences % rows: subjects % columns: models (1..Nk) % alpha0 - [1 x Nk] vector of prior model counts % Nsamp - number of samples (default: 1e6) % % OUTPUT: % exp_r - [1 x Nk] expectation of the posterior p(r|y) % xp - exceedance probabilities % r_samp - [Nsamp x Nk] matrix of samples from posterior % g_post - [Ni x Nk] matrix of posterior probabilities with % g_post(i,k) being post prob that subj i used model k %__________________________________________________________________________ % Will Penny % Copyright (C) 2009-2022 Wellcome Centre for Human Neuroimaging if nargin < 3 || isempty(Nsamp) Nsamp = 1e4; end Ni = size(lme,1); % number of subjects Nk = size(lme,2); % number of models % prior observations %-------------------------------------------------------------------------- if nargin < 2 || isempty(alpha0) alpha0 = ones(1,Nk); end alpha0 = alpha0(:)'; % Initialise; sample r from prior r = zeros(1,Nk); for k = 1:Nk r(:,k) = spm_gamrnd(alpha0(k),1); end sr = sum(r,2); for k = 1:Nk r(:,k) = r(:,k)./sr; end % Subtract max evidence for subject lme = lme - max(lme,[],2)*ones(1,Nk); % Gibbs sampling r_samp = zeros(Nsamp,Nk); g_post = zeros(Ni,Nk); for samp = 1:2*Nsamp mod_vec = sparse(Ni,Nk); % Sample m's given y, r for i = 1:Ni % Pick a model for this subject u = exp(lme(i,:) + log(r)) + eps; g = u / sum(u); gmat(i,:) = g; modnum = spm_multrnd(g,1); mod_vec(i,modnum) = 1; end % Sample r's given y, m beta = sum(mod_vec,1); alpha = alpha0+beta; for k = 1:Nk r(:,k) = spm_gamrnd(alpha(k),1); end sr = sum(r,2); for k = 1:Nk r(:,k) = r(:,k) ./ sr; end % Only keep last Nsamp samples if samp > Nsamp r_samp(samp-Nsamp,:) = r; g_post = g_post+gmat; end if mod(samp,1e4)==0 fprintf('%d samples out of %d\n',samp,2*Nsamp); end end g_post = g_post/Nsamp; % Posterior mean exp_r = mean(r_samp,1); % Exceedence probs xp = zeros(1,Nk); [y,j] = max(r_samp,[],2); tmp = histc(j,1:Nk)'; xp = tmp / Nsamp;