**************** Supernova Models **************** Getting Started =============== Create a model using the built-in "source" named ``'hsiao'``: >>> import sncosmo >>> model = sncosmo.Model(source='hsiao') Set the redshift, time-of-zero-phase and the amplitude: >>> model.set(z=0.5, t0=55000., amplitude=1.e-10) Generate synthetic photometry through an observer-frame bandpass: >>> model.bandmag('desr', 'ab', [54990., 55000., 55020.]) array([ 24.82381795, 24.41496701, 25.2950865 ]) Equivalent values in photons / s / cm^2: >>> model.bandflux('desr', [54990., 55000., 55020.]) array([ 7.22413301e-05, 1.05275209e-04, 4.68034980e-05]) Equivalent values scaled so that 1 is equivalent to an AB magnitude of 25: >>> model.bandflux('desr', [54990., 55000., 55020.], zp=25., zpsys='ab') array([ 1.17617737, 1.71400939, 0.7620183 ]) Generate an observer-frame spectrum at a given time and wavelengths (in ergs/s/cm^2/Angstrom): >>> model.flux(54990., [4000., 4100., 4200.]) array([ 4.31210900e-20, 7.46619962e-20, 1.42182787e-19]) Creating a model using a built-in source ======================================== A Model in sncosmo consists of * **One "source"** A model of the spectral evolution of the source (e.g., a supernova). * **Zero or more "propagation effects"** Models of how intervening structures (e.g., host galaxy dust, milky way dust) affect the spectrum. In the above example, we created a model with no propagation effects, using one of the built-in ``Source`` instances that sncosmo knows about: ``'hsiao'``. See the full :ref:`list-of-built-in-sources` that sncosmo knows about. .. note:: In fact, the data for "built-in" sources are hosted remotely, downloaded as needed, and cached locally. So the first time you load a given model, you need to be connected to the internet. You will see a progress bar as the data are downloaded. By default, SNCosmo will use a subdirectory of the AstroPy cache directory for this purpose, e.g., ``$HOME/.astropy/cache/sncosmo``, but this can be changed by setting the ``data_dir`` configuration parameter in ``$HOME/.astropy/config/sncosmo.cfg``. See :doc:`configuration` for more information. Some built-in source models have multiple versions, which can be explicitly retrieved using the `~sncosmo.get_source` function: >>> source = sncosmo.get_source('hsiao', version='2.0') >>> model = sncosmo.Model(source=source) Model parameters ================ Each model has a set of parameter names and values: >>> model.param_names ['z', 't0', 'amplitude'] >>> model.parameters array([ 0., 0., 1.]) These can also be retrieved as: >>> model.get('z') 0.0 >>> model['z'] 0.0 Parameter values can be set by any of the following methods: >>> model.parameters[0] = 0.5 >>> model.parameters = [0.5, 0., 1.] # set the entire array >>> model['z'] = 0.5 >>> model.set(z=0.5) >>> model.set(z=0.5, amplitude=2.0) # Can specify multiple parameters >>> model.update({'z': 0.5, 'amplitude': 2.0}) What do these parameters mean? The first two, ``z`` and ``t0`` are common to all `~sncosmo.Model` instances: * ``z`` is the redshift of the source. * ``t0`` is the observer-frame time corresponding to the source's phase=0. Note that in some sources phase=0 might be at explosion while others might be at max: the definition of phase is arbitrary. However, observed time is always related to phase via ``time = t0 + phase * (1 + z)`` The next, ``amplitude``, is specific to the particular type of source. In this case, the source is a simple spectral timeseries that can only be scaled up and down. Other sources could have other parameters that affect the shape of the spectrum at each phase. For a given model, you can set the ``amplitude`` (or ``x0`` in case you are using a SALT model) according to a desired absolute magnitude in a specific band by using the method `~sncosmo.Model.set_source_peakabsmag()`. Note that the redshift ``z`` affects your result. Therefore, you could specify: >>> model.set(z=1.6) >>> model.set_source_peakabsmag(-19.0, 'bessellb', 'ab') Specifically, for SALT models, it is recommended to call `~sncosmo.Model.set_source_peakabsmag()` after setting the other model parameters, such as ``x1`` and ``c``. It probably won't make a difference if you are using the ``'bessellb'`` bandpass, but if you were setting the absolute magnitude in another band, it would make a small difference. The reason for this peculiarity is that "absolute magnitude" is not a parameter in the SALT2 model, per se. The parameters are ``x0``, ``x1``, ``c``, ``t0``, and ``z``. ``x0`` is a simple multiplicative scaling factor on the whole spectral timeseries. The ``set_source_peakabsmag()`` method is a convenience for setting ``x0`` such that the integrated flux through a given bandpass is as desired. Since the integrated flux depends on the spectral shape, it will depend on ``x1`` and ``c``. Creating a model with a source and effect(s) ============================================ Let's create a slightly more complex model. Again we will use the Hsiao spectral time series as a source, but this time we will add host galaxy dust. >>> dust = sncosmo.CCM89Dust() >>> model = sncosmo.Model(source='hsiao', ... effects=[dust], ... effect_names=['host'], ... effect_frames=['rest']) The model now has additional parameters that describe the dust, ``hostebv`` and ``hostr_v``: >>> model.param_names ['z', 't0', 'amplitude', 'hostebv', 'hostr_v'] >>> model.parameters array([ 0. , 0. , 1. , 0. , 3.1]) These are the parameters of the ``CCM89Dust`` instance we created: >>> dust.param_names ['ebv', 'r_v'] In the model, the parameter names are prefixed with the name of the effect (``host``). At any time you can print the model to get a nicely formatted string representation of its components and current parameter values: >>> print(model) source: class : TimeSeriesSource name : hsiao version : 3.0 phases : [-20, .., 85] days (22 points) wavelengths: [1000, .., 25000] Angstroms (481 points) effect (name='host' frame='rest'): class : CCM89Dust wavelength range: [1250, 33333] Angstroms parameters: z = 0.0 t0 = 0.0 amplitude = 1.0 hostebv = 0.0 hostr_v = 3.1000000000000001 Also, ``str(model)`` will return this string rather than printing it. Adding Milky Way dust ===================== Dust in the Milky Way will affect the shape of an observed supernova spectrum. It is important to take this into account in our model when fitting the model to observed data. As with host galaxy dust treated above, we can model Milky Way dust as a "propagation effect". The only difference is that Milky Way dust is in the observer frame rather than the supernova rest frame. Here, we create a model with dust in *both* the SN rest frame and the observer frame:: >>> dust = sncosmo.CCM89Dust() >>> model = sncosmo.Model(source='hsiao', ... effects=[dust, dust], ... effect_names=['host', 'mw'], ... effect_frames=['rest', 'obs']) We can see that the model includes four extra parameters (two describing the host galaxy dust and two describing the milky way dust):: >>> model.param_names ['z', 't0', 'amplitude', 'hostebv', 'hostr_v', 'mwebv', 'mwr_v'] >>> model.parameters # default values array([ 0. , 0. , 1. , 0. , 3.1, 0. , 3.1]) The host galaxy dust parameters are prefixed with ``'host'`` and the Milky Way dust parameters are prefixed with ``'mw'``. These are just the names we supplied when constructing the model. The effect names have no significance beyond this. The effect frames, on the other hand, *are* significant. The only allowed values are ``'rest'`` (rest frame) and ``'obs'`` (observer frame). A typical use pattern is to get an estimate of the amount of Milky Way dust at the location of the supernova from a dust map, and then to fix that amount of dust in the model. The following example illustrates how to do this using the Schlegel, Finkbeiner and Davis (1998) dust map with the `sfdmap `_ package. First, load the dust map (do this only once):: >>> import sfdmap >>> dustmap = sfdmap.SFDMap("/path/to/dust/maps") Now, for each SN you wish to fit, get the amount of dust at the SN location and set the ``mwebv`` model parameter appropriately. For example, if the SN is located at RA=42.8 degrees, Dec=0 degrees:: >>> ebv = dustmap.ebv(42.8, 0.0) >>> model.set(mwebv=ebv) >>> # proceed with fitting the other model parameters to the data. Note that we wish to *fix* the ``mwebv`` model parameter rather than fitting it to the data like the other parameters: We're supposing that this value is perfectly known from the dust map. Therefore, when using a function such as `~sncosmo.fit_lc` to fit the parameters, be sure *not* to include ``'mwebv'`` in the list of parameters to vary. Adding color dependant scatter model ==================================== The intrinsic scattering of SNe Ia is color dependant it can be modelled for simulation purpose by G10 or C11 models. The implemention is based on Kessler et al. 2012. They both act as random variation in the spectra model of a `~sncosmo.SALT2Source` or `~sncosmo.SALT3Source`. The G10 model relies on SALT2 residuals, thus it needs to take a `SALTSource` as an argument. It can be added to your `~sncosmo.Model` as: .. code:: python >>> source = 'salt2' >>> SALTSource = sncosmo.models.get_source(name=source) >>> G10 = sncosmo.models.G10(SALTsource=SALTSource) >>> SALTwithG10 = sncosmo.Model(source='salt2', effects=[G10], effect_names=['G10'], effect_frames=['rest']) The G10 model parameters are: * ``L0``, ``F0`` and ``F1`` are used in the multiplicative factor introduced in Kessler et al. 2012. Their default values are ``L0=2157.3``, ``F0=0`` and ``F1=1.08e-4``. * ``dL`` the wavelength range between each scatter node. Following Kessler et al. 2012 it is set by default to 800A. Since the C11 model does not relies on SALT2 residuals, it does not need a `SALTSource`. It can be added to your `~sncosmo.Model` as: .. code:: python >>> C11 = sncosmo.models.C11() >>> SALTwithC11 = sncosmo.Model(source='salt2', effects=[C11], effect_names=['C11'], effect_frames=['rest']) The C11 model parameters are: * ``CvU`` the correlation coefficient between the v and U band that could be -1, 0 or 1. * ``Sf`` a scale factor fixed by default to ``S_f=1.3`` according to Kessler et al. 2012. Phase Dependant effects ======================= Primarily to simulate lensed transients, phase dependant effects can also be applied. Derived classes of `~sncosmo.PropagationEffect` can add the ```self._minphase`` and ``self._maxphase`` parameters. Once your phase dependant effect is defined, it can be added to a model in the same way as chromatic effects, by specifying the appropriate ``effects``, ``effect_frames``, and ``effect_names`` when defining your `~sncosmo.Model`. Model spectrum ============== To retrieve a spectrum (in ergs / s / cm^2 / Angstrom) at a given observer-frame time and set of wavelengths: >>> wave = np.array([3000., 3500., 4000., 4500., 5000., 5500.]) >>> model.flux(-5., wave) array([ 5.29779465e-09, 7.77702880e-09, 7.13309678e-09, 5.68369041e-09, 3.06860759e-09, 2.59024291e-09]) We can supply a list or array of times and get a 2-d array back, representing the spectrum at each time: >>> model.flux([-5., 2.], wave) array([[ 5.29779465e-09, 7.77702880e-09, 7.13309678e-09, 5.68369041e-09, 3.06860759e-09, 2.59024291e-09], [ 2.88166481e-09, 6.15186858e-09, 7.87880448e-09, 6.93919846e-09, 3.59077596e-09, 3.27623932e-09]]) Changing the model parameters changes the results: >>> model.parameters array([0., 0., 1., 0., 3.1]) >>> model.flux(-5., [4000., 4500.]) array([ 7.13309678e-09, 5.68369041e-09]) >>> model.set(amplitude=2., hostebv=0.1) >>> model.flux(-5., [4000., 4500.]) array([ 9.39081327e-09, 7.86972003e-09]) Synthetic photometry ==================== To integrate the spectrum through a bandpass, use the bandflux method: >>> model.bandflux('sdssi', -5.) 180213.72886169454 Here we are using the SDSS I band, at time -5. days. The return value is in photons / s / cm^2. It is also possible to supply multiple times or bands: >>> model.bandflux('sdssi', [-5., 2.]) array([ 180213.72886169, 176662.68287381]) >>> model.bandflux(['sdssi', 'sdssz'], [-5., -5.]) array([ 180213.72886169, 27697.76705621]) Instead of returning flux in photons / s / cm^2, the flux can be normalized to a desired zeropoint by specifying the ``zp`` and ``zpsys`` keywords, which can also be scalars, lists, or arrays. >>> model.bandflux(['sdssi', 'sdssz'], [-5., -5.], zp=25., zpsys='ab') array([ 5.01036850e+09, 4.74414435e+09]) Instead of flux, magnitude can be returned. It works very similarly to flux: >>> model.bandmag('sdssi', 'ab', [0., 1.]) array([ 22.6255077 , 22.62566363]) >>> model.bandmag('sdssi', 'vega', [0., 1.]) array([ 22.26843273, 22.26858865]) We have been specifying the bandpasses as strings (``'sdssi'`` and ``'sdssz'``). This works because these bandpasses are in the sncosmo "registry". However, this is merely a convenience. In place of strings, we could have specified the actual `~sncosmo.Bandpass` objects to which the strings correspond. See :doc:`bandpasses` for more on how to directly create `~sncosmo.Bandpass` objects. The magnitude systems work similarly to bandpasses: ``'ab'`` and ``'vega'`` refer to built-in `~sncosmo.MagSystem` objects, but you can also directly supply custom `~sncosmo.MagSystem` objects. See :doc:`magsystems` for details. Initializing Sources directly ============================= You can initialize a source directly from your own template rather than using the built-in source templates. Initializing a ``TimeSeriesSource`` ----------------------------------- These sources are created directly from numpy arrays. Below, we build a very simple model, of a source with a flat spectrum at all times, rising from phase -50 to 0, then declining from phase 0 to +50. >>> import numpy as np >>> phase = np.linspace(-50., 50., 11) >>> disp = np.linspace(3000., 8000., 6) >>> flux = np.repeat(np.array([[0.], [1.], [2.], [3.], [4.], [5.], ... [4.], [3.], [2.], [1.], [0.]]), ... 6, axis=1) >>> source = sncosmo.TimeSeriesSource(phase, disp, flux) Typically, you would then include this source in a ``Model``: >>> model = sncosmo.Model(source) Initializing a ``SALT2Source`` ------------------------------ The SALT2 model is initialized directly from data files representing the model. You can initialize it by giving it a path to a directory containing the files. >>> source = sncosmo.SALT2Source(modeldir='/path/to/dir') By default, the initializer looks for files with names like ``'salt2_template_0.dat'``, but this behavior can be altered with keyword parameters: >>> source = sncosmo.SALT2Source(modeldir='/path/to/dir', ... m0file='mytemplate0file.dat') See `~sncosmo.SALT2Source` for more details.