-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdatasets.py
89 lines (81 loc) · 4.13 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import numpy as np
from builtins import range
from torch_geometric.data import InMemoryDataset, Data
from sklearn.metrics import pairwise_distances
import pandas as pd
def get_hubmap_edge_index(pos, regions, distance_thres):
edge_list = []
regions_unique = np.unique(regions)
for reg in regions_unique:
locs = np.where(regions == reg)[0]
pos_region = pos[locs, :]
dists = pairwise_distances(pos_region)
dists_mask = dists < distance_thres
np.fill_diagonal(dists_mask, 0)
region_edge_list = np.transpose(np.nonzero(dists_mask)).tolist()
for (i, j) in region_edge_list:
edge_list.append([locs[i], locs[j]])
return edge_list
def get_tonsilbe_edge_index(pos, distance_thres):
edge_list = []
dists = pairwise_distances(pos)
dists_mask = dists < distance_thres
np.fill_diagonal(dists_mask, 0)
edge_list = np.transpose(np.nonzero(dists_mask)).tolist()
return edge_list
def load_hubmap_data(labeled_file, unlabeled_file, distance_thres, sample_rate):
train_df = pd.read_csv(labeled_file)
test_df = pd.read_csv(unlabeled_file)
train_df = train_df.sample(n=round(sample_rate*len(train_df)), random_state=1)
test_df = test_df.sample(n=round(sample_rate*len(test_df)), random_state=1)
train_df = train_df.loc[np.logical_and(train_df['tissue'] == 'CL', train_df['donor'] == 'B004')]
test_df = test_df.loc[np.logical_and(test_df['tissue'] == 'CL', test_df['donor'] == 'B005')]
train_X = train_df.iloc[:, 1:49].values
test_X = test_df.iloc[:, 1:49].values
labeled_pos = train_df.iloc[:, -6:-4].values
unlabeled_pos = test_df.iloc[:, -5:-3].values
labeled_regions = train_df['unique_region']
unlabeled_regions = test_df['unique_region']
train_y = train_df['cell_type_A']
cell_types = np.sort(list(set(train_df['cell_type_A'].values))).tolist()
cell_type_dict = {}
for i, cell_type in enumerate(cell_types):
cell_type_dict[cell_type] = i
train_y = np.array([cell_type_dict[x] for x in train_y])
labeled_edges = get_hubmap_edge_index(labeled_pos, labeled_regions, distance_thres)
unlabeled_edges = get_hubmap_edge_index(unlabeled_pos, unlabeled_regions, distance_thres)
return train_X, train_y, test_X, labeled_edges, unlabeled_edges
def load_tonsilbe_data(filename, mapping_filename, distance_thres, sample_rate):
df = pd.read_csv(filename)
train_df = df.loc[df['sample_name'] == 'tonsil']
train_df = train_df.sample(n=round(sample_rate*len(train_df)), random_state=1)
test_df = df.loc[df['sample_name'] == 'Barretts Esophagus']
train_X = train_df.iloc[:, 1:-4].values
test_X = test_df.iloc[:, 1:-4].values
train_y = train_df['final_cell_type'].str.lower()
level_mappping_df = pd.read_csv(mapping_filename)
level_mapping = {}
for i in range(len(level_mappping_df)):
level_mapping[level_mappping_df['Level_1'][i].lower()] = level_mappping_df['Level_3'][i].lower()
train_y = [level_mapping[x] for x in train_y]
labeled_pos = train_df.iloc[:, -4:-2].values
unlabeled_pos = test_df.iloc[:, -4:-2].values
cell_types = np.sort(list(set(train_y))).tolist()
cell_type_dict = {}
for i, cell_type in enumerate(cell_types):
cell_type_dict[cell_type] = i
train_y = np.array([cell_type_dict[x] for x in train_y])
labeled_edges = get_tonsilbe_edge_index(labeled_pos, distance_thres)
unlabeled_edges = get_tonsilbe_edge_index(unlabeled_pos, distance_thres)
return train_X, train_y, test_X, labeled_edges, unlabeled_edges
class CodexGraphDataset(InMemoryDataset):
def __init__(self, labeled_X, labeled_y, unlabeled_X, labeled_edges, unlabeled_edges, transform=None,):
self.root = '.'
super(CodexGraphDataset, self).__init__(self.root, transform)
self.labeled_data = Data(x=torch.FloatTensor(labeled_X), edge_index=torch.LongTensor(labeled_edges).T, y=torch.LongTensor(labeled_y))
self.unlabeled_data = Data(x=torch.FloatTensor(unlabeled_X), edge_index=torch.LongTensor(unlabeled_edges).T)
def __len__(self):
return 2
def __getitem__(self, idx):
return self.labeled_data, self.unlabeled_data