This is an official implementation for CVPR 2022 paper "RU-Net: Regularized Unrolling Network for Scene Graph Generation".
This project is based on the code of Scene Graph Benchmark in Pytorch.
Method overview
- Clone this repo
git clone https://github.com/siml3/RU-Net.git
cd RU-Net
- Create a conda virtual environment and activate it (optional)
conda create -n runet -y
conda activate runet
- Prepare proper pytorch environment for your device.
-
Install dependencies
conda install ipython conda install scipy conda install h5py pip install ninja yacs cython matplotlib tqdm opencv-python-headless overrides git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI python setup.py build_ext install cd ../../ # GPU and Cuda environment is necessary for proper compilation of this repo git clone https://github.com/NVIDIA/apex.git cd apex python setup.py install --cuda_ext --cpp_ext cd ../
-
Compile extensions and install this repo in
develop
modepython setup.py build develop
Please refer to the DATASET.md
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10001 --nproc_per_node=4 tools/detector_pretrain_net.py --config-file "configs/e2e_relation_detector_X_101_32_8_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 DTYPE "float32" SOLVER.MAX_ITER 50000 SOLVER.STEPS "(30000, 45000)" SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 MODEL.RELATION_ON False SOLVER.PRE_VAL False OUTPUT_DIR /path/to/output
The training scripts are available in the folder scripts
If you have multi gpus, try the command as the follows for SGCLS:
# four cards
PYTHONPATH=$PWD CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10022 --nproc_per_node=4 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR "exp/RU-Net" SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 4 DTYPE "float16" SOLVER.PRE_VAL True MODEL.ROI_RELATION_HEAD.PREDICTOR RUNetPredictor MODEL.ROI_RELATION_HEAD.MP_LAYER_NUM 5 SOLVER.BASE_LR 0.0025 GLOVE_DIR glove MODEL.MODEL.ROI_RELATION_HEAD.L21_LOSS 0.7
gpu_id=0,1
port=10086
gpu_num=2
output_dir=""
PYTHONPATH=$PWD CUDA_VISIBLE_DEVICES=${gpu_id} python -m torch.distributed.launch --master_port ${port} --nproc_per_node=${gpu_num} tools/relation_test_net.py --config-file "${output_dir}/config.yml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False OUTPUT_DIR "${output_dir}" TEST.IMS_PER_BATCH ${gpu_num} DTYPE "float16" GLOVE_DIR glove MODEL.ROI_RELATION_HEAD.L21_LOSS 0.7
Here we provide our pretrained model via BaiduNetDisk:
Link:https://pan.baidu.com/s/1zmHPKPpeUioVQXGCwn9rAA Extraction code:1010
If RU-Net is helpful for your research, we'd really appreciate it if you could cite this paper:
@inproceedings{lin2022ru,
title={RU-Net: Regularized Unrolling Network for Scene Graph Generation},
author={Lin, Xin and Ding, Changxing and Zhang, Jing and Zhan, Yibing and Tao, Dacheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={19457--19466},
year={2022}
}