"""This script is the differentiable renderer for Deep3DFaceRecon_pytorch Attention, antialiasing step is missing in current version. """ import torch import torch.nn.functional as F import kornia from kornia.geometry.camera import pixel2cam import numpy as np from typing import List import nvdiffrast.torch as dr from scipy.io import loadmat from torch import nn def ndc_projection(x=0.1, n=1.0, f=50.0): return np.array([[n/x, 0, 0, 0], [ 0, n/-x, 0, 0], [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], [ 0, 0, -1, 0]]).astype(np.float32) class MeshRenderer(nn.Module): def __init__(self, rasterize_fov, znear=0.1, zfar=10, rasterize_size=224, use_opengl=True): super(MeshRenderer, self).__init__() x = np.tan(np.deg2rad(rasterize_fov * 0.5)) * znear self.ndc_proj = torch.tensor(ndc_projection(x=x, n=znear, f=zfar)).matmul( torch.diag(torch.tensor([1., -1, -1, 1]))) self.rasterize_size = rasterize_size self.use_opengl = use_opengl self.ctx = None def forward(self, vertex, tri, feat=None): """ Return: mask -- torch.tensor, size (B, 1, H, W) depth -- torch.tensor, size (B, 1, H, W) features(optional) -- torch.tensor, size (B, C, H, W) if feat is not None Parameters: vertex -- torch.tensor, size (B, N, 3) tri -- torch.tensor, size (B, M, 3) or (M, 3), triangles feat(optional) -- torch.tensor, size (B, C), features """ device = vertex.device rsize = int(self.rasterize_size) ndc_proj = self.ndc_proj.to(device) # trans to homogeneous coordinates of 3d vertices, the direction of y is the same as v if vertex.shape[-1] == 3: vertex = torch.cat([vertex, torch.ones([*vertex.shape[:2], 1]).to(device)], dim=-1) vertex[..., 1] = -vertex[..., 1] vertex_ndc = vertex @ ndc_proj.t() if self.ctx is None: if self.use_opengl: self.ctx = dr.RasterizeCudaContext(device=device) ctx_str = "opengl" else: self.ctx = dr.RasterizeCudaContext(device=device) ctx_str = "cuda" print("create %s ctx on device cuda:%d"%(ctx_str, device.index)) ranges = None if isinstance(tri, List) or len(tri.shape) == 3: vum = vertex_ndc.shape[1] fnum = torch.tensor([f.shape[0] for f in tri]).unsqueeze(1).to(device) fstartidx = torch.cumsum(fnum, dim=0) - fnum ranges = torch.cat([fstartidx, fnum], axis=1).type(torch.int32).cpu() for i in range(tri.shape[0]): tri[i] = tri[i] + i*vum vertex_ndc = torch.cat(vertex_ndc, dim=0) tri = torch.cat(tri, dim=0) # for range_mode vetex: [B*N, 4], tri: [B*M, 3], for instance_mode vetex: [B, N, 4], tri: [M, 3] tri = tri.type(torch.int32).contiguous() rast_out, _ = dr.rasterize(self.ctx, vertex_ndc.contiguous(), tri, resolution=[rsize, rsize], ranges=ranges) depth, _ = dr.interpolate(vertex.reshape([-1,4])[...,2].unsqueeze(1).contiguous(), rast_out, tri) depth = depth.permute(0, 3, 1, 2) mask = (rast_out[..., 3] > 0).float().unsqueeze(1) depth = mask * depth image = None if feat is not None: image, _ = dr.interpolate(feat, rast_out, tri) image = image.permute(0, 3, 1, 2) image = mask * image return mask, depth, image