Keras code of "Fast Disparity Estimation using Dense Networks" in the proceedings of International Conference on Robotics and Automation, Australia, 2018 (ICRA 2018).
The paper can be downloaded here.
DenseMapNet Features
- Predicts disparity map using full resolution stereo RGB
- Fast at >=30Hz on NVIDIA 1080Ti GPU
- Tiny network with only 290k parameters
- Accurate with Low End-Point-Error or EPE
Download datasets:
Copy: cp driving.tar.bz2 densemapnet/dataset
Change dir and extract: cd densemanpnet/dataset; tar jxvf driving.tar.bz2
Available datasets:
driving
- Drivingmpi
- MPI Sintel
Additional datasets will be available in the future.
In some datasets, the train data is split into multiple files. For example, driving
is split into 4 files while mpi
fits into 1 file.
To train the network:
python3 predictor.py --dataset=driving --num_dataset=4
Alterntaively, load the pre-trained weigths:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5
To measure EPE using test set:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --notrain
To benchmark speed only:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --predict
To generate disparity predictions on both train and test datasets (complete sequential images used to create the video):
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --predict --images
If you find this work useful, please cite:
@inproceedings{atienza2018fast,
title={Fast Disparity Estimation using Dense Networks},
author={Atienza, Rowel},
booktitle={2018 IEEE International Conference on Robotics and Automation (ICRA)},
pages={3207--3212},
year={2018},
organization={IEEE}
}