Skip to content
/ MVDNet Public

Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals, CVPR 2021.

License

Notifications You must be signed in to change notification settings

qiank10/MVDNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MVDNet

Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals, CVPR 2021.

Prerequisites

  • Python 3.7
  • Pytorch 1.5.0
  • Detectron2
  • Pycocotools

MVDNet uses an old version of Detectron2 (i.e., 0.1.1) with minor modifications. To download and install the compatible version:

git clone https://github.com/qiank10/detectron2.git
git checkout alt-0.1.1
cd detectron2 && pip install -e .

Install MVDNet

git clone https://github.com/qiank10/MVDNet.git
cd MVDNet && pip install -e .

Prepare Data

Download the Oxford Radar RobotCar Dataset. Currently, only the vehicles in the first data record (Date: 10/01/2019, Time: 11:46:21 GMT) are labeled. After unzipping the files, the directory should look like this:

# Oxford Radar RobotCar Data Record
|-- DATA_PATH
    |-- gt
    |-- radar
    |-- velodyne_left
    |-- velodyne_right
    |-- vo
    |-- radar.timestamps
    |-- velodyne_left.timestamps
    |-- velodyne_right.timestamps
    |-- ...

Prepare the radar data:

python data/sdk/prepare_radar_data.py --data_path DATA_PATH --image_size 320 --resolution 0.2

Prepare the lidar data:

python data/sdk/prepare_lidar_data.py --data_path DATA_PATH

Prepare the foggy lidar test set with specified fog density, e.g., 0.05:

python data/sdk/prepare_fog_data.py --data_path DATA_PATH --beta 0.05

The processed data is organized as follows:

# Oxford Radar RobotCar Data Record
|-- DATA_PATH
    |-- processed
        |-- radar
            |-- 1547120789640420.jpg
            |-- ...
        |-- radar_history
            |-- 1547120789640420_k.jpg   # The k-th radar frame preceding the frame at the timestamp 1547120789640420, k=1,2,3,4.
            |-- ...
        |-- lidar
            |-- 1547120789640420.bin
            |-- ...
        |-- lidar_history
            |-- 1547120789640420_k.bin   # Link to the k-th lidar frame preceding the frame at the timestamp 1547120789640420, k=1,2,3,4.
            |-- 1547120789640420_k_T.bin # Transform matrix between the k-th preceding lidar frame and the current frame.
            |-- ...
        |-- lidar_fog_0.05               # Foggy lidar data with fog density as 0.05
            |-- 1547120789640420.bin
            |-- ...
        |-- lidar_history_fog_0.05
            |-- 1547120789640420_k.bin
            |-- 1547120789640420_k_T.bin
            |-- ...

Both 2D and 3D labels are in

./data/RobotCar/object/

Train MVDNet

python ./tools/train.py --config ./configs/train_config.yaml

Evaluate MVDNet

python ./tools/eval.py --config ./configs/eval_config.yaml

About

Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals, CVPR 2021.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages