# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import warnings from copy import deepcopy from dataclasses import dataclass from typing import Optional, Union import torch from tensordict import TensorDict, TensorDictBase, TensorDictParams from tensordict.nn import dispatch, TensorDictModule from tensordict.utils import NestedKey from torch import nn from torchrl.data.tensor_specs import TensorSpec from torchrl.data.utils import _find_action_space from torchrl.modules import SafeSequential from torchrl.modules.tensordict_module.actors import QValueActor from torchrl.modules.tensordict_module.common import ensure_tensordict_compatible from torchrl.objectives.common import LossModule from torchrl.objectives.utils import ( _cache_values, _GAMMA_LMBDA_DEPREC_ERROR, default_value_kwargs, distance_loss, ValueEstimators, ) from torchrl.objectives.value import TDLambdaEstimator from torchrl.objectives.value.advantages import TD0Estimator, TD1Estimator class QMixerLoss(LossModule): """The QMixer loss class. Mixes local agent q values into a global q value according to a mixing network and then uses DQN updates on the global value. This loss is for multi-agent applications. Therefore, it expects the 'local_value', 'action_value' and 'action' keys to have an agent dimension (this is visible in the dafault AcceptedKeys). This dimension will be mixed by the mixer which will compute a 'global_value' key, used for a DQN objective. The premade mixers of type :class:`torchrl.modules.models.multiagent.Mixer` will expect the multi-agent dimension to be the penultimate one. Args: local_value_network (QValueActor or nn.Module): a local Q value operator. mixer_network (TensorDictModule or nn.Module): a mixer network mapping the agents' local Q values and an optional state to the global Q value. It is suggested to provide a TensorDictModule wrapping a mixer from :class:`torchrl.modules.models.multiagent.Mixer`. Keyword Args: loss_function (str, optional): loss function for the value discrepancy. Can be one of "l1", "l2" or "smooth_l1". Defaults to "l2". delay_value (bool, optional): whether to duplicate the value network into a new target value network to create a double DQN. Default is ``False``. action_space (str or TensorSpec, optional): Action space. Must be one of ``"one-hot"``, ``"mult_one_hot"``, ``"binary"`` or ``"categorical"``, or an instance of the corresponding specs (:class:`torchrl.data.OneHot`, :class:`torchrl.data.MultiOneHot`, :class:`torchrl.data.Binary` or :class:`torchrl.data.Categorical`). If not provided, an attempt to retrieve it from the value network will be made. priority_key (NestedKey, optional): [Deprecated, use .set_keys(priority_key=priority_key) instead] The key at which priority is assumed to be stored within TensorDicts added to this ReplayBuffer. This is to be used when the sampler is of type :class:`~torchrl.data.PrioritizedSampler`. Defaults to ``"td_error"``. Examples: >>> import torch >>> from torch import nn >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torchrl.modules import QValueModule, SafeSequential >>> from torchrl.modules.models.multiagent import QMixer >>> from torchrl.objectives.multiagent import QMixerLoss >>> n_agents = 4 >>> module = TensorDictModule( ... nn.Linear(10,3), in_keys=[("agents", "observation")], out_keys=[("agents", "action_value")] ... ) >>> value_module = QValueModule( ... action_value_key=("agents", "action_value"), ... out_keys=[ ... ("agents", "action"), ... ("agents", "action_value"), ... ("agents", "chosen_action_value"), ... ], ... action_space="categorical", ... ) >>> qnet = SafeSequential(module, value_module) >>> qmixer = TensorDictModule( ... module=QMixer( ... state_shape=(64, 64, 3), ... mixing_embed_dim=32, ... n_agents=n_agents, ... device="cpu", ... ), ... in_keys=[("agents", "chosen_action_value"), "state"], ... out_keys=["chosen_action_value"], ... ) >>> loss = QMixerLoss(qnet, qmixer, action_space="categorical") >>> td = TensorDict( ... { ... "agents": TensorDict( ... {"observation": torch.zeros(32, n_agents, 10)}, [32, n_agents] ... ), ... "state": torch.zeros(32, 64, 64, 3), ... "next": TensorDict( ... { ... "agents": TensorDict( ... {"observation": torch.zeros(32, n_agents, 10)}, [32, n_agents] ... ), ... "state": torch.zeros(32, 64, 64, 3), ... "reward": torch.zeros(32, 1), ... "done": torch.zeros(32, 1, dtype=torch.bool), ... "terminated": torch.zeros(32, 1, dtype=torch.bool), ... }, ... [32], ... ), ... }, ... [32], ... ) >>> loss(qnet(td)) TensorDict( fields={ loss: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) """ @dataclass class _AcceptedKeys: """Maintains default values for all configurable tensordict keys. This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their default values. Attributes: advantage (NestedKey): The input tensordict key where the advantage is expected. Will be used for the underlying value estimator. Defaults to ``"advantage"``. value_target (NestedKey): The input tensordict key where the target state value is expected. Will be used for the underlying value estimator Defaults to ``"value_target"``. local_value (NestedKey): The input tensordict key where the local chosen action value is expected. Will be used for the underlying value estimator. Defaults to ``("agents", "chosen_action_value")``. global_value (NestedKey): The input tensordict key where the global chosen action value is expected. Will be used for the underlying value estimator. Defaults to ``"chosen_action_value"``. action (NestedKey): The input tensordict key where the action is expected. Defaults to ``("agents", "action")``. action_value (NestedKey): The input tensordict key where the action value is expected. Defaults to ``("agents", "action_value")``. priority (NestedKey): The input tensordict key where the target priority is written to. Defaults to ``"td_error"``. reward (NestedKey): The input tensordict key where the reward is expected. Will be used for the underlying value estimator. Defaults to ``"reward"``. done (NestedKey): The key in the input TensorDict that indicates whether a trajectory is done. Will be used for the underlying value estimator. Defaults to ``"done"``. terminated (NestedKey): The key in the input TensorDict that indicates whether a trajectory is terminated. Will be used for the underlying value estimator. Defaults to ``"terminated"``. """ advantage: NestedKey = "advantage" value_target: NestedKey = "value_target" local_value: NestedKey = ("agents", "chosen_action_value") global_value: NestedKey = "chosen_action_value" action_value: NestedKey = ("agents", "action_value") action: NestedKey = ("agents", "action") priority: NestedKey = "td_error" reward: NestedKey = "reward" done: NestedKey = "done" terminated: NestedKey = "terminated" default_keys = _AcceptedKeys() default_value_estimator = ValueEstimators.TD0 out_keys = ["loss"] local_value_network: TensorDictModule local_value_network_params: TensorDictParams target_local_value_network_params: TensorDictParams mixer_network: TensorDictModule mixer_network_params: TensorDictParams target_mixer_network_params: TensorDictParams def __init__( self, local_value_network: Union[QValueActor, nn.Module], mixer_network: Union[TensorDictModule, nn.Module], *, loss_function: Optional[str] = "l2", delay_value: bool = True, gamma: float = None, action_space: Union[str, TensorSpec] = None, priority_key: str = None, ) -> None: super().__init__() self._in_keys = None self._set_deprecated_ctor_keys(priority=priority_key) self.delay_value = delay_value local_value_network = ensure_tensordict_compatible( module=local_value_network, wrapper_type=QValueActor, action_space=action_space, ) if not isinstance(mixer_network, TensorDictModule): # If it is not a TensorDictModule we make it one with default keys mixer_network = ensure_tensordict_compatible( module=mixer_network, in_keys=[self.tensor_keys.local_value], out_keys=[self.tensor_keys.global_value], ) global_value_network = SafeSequential(local_value_network, mixer_network) params = TensorDict.from_module(global_value_network) with params.apply( self._make_meta_params, device=torch.device("meta"), filter_empty=False ).to_module(global_value_network): self.__dict__["global_value_network"] = deepcopy(global_value_network) self.convert_to_functional( local_value_network, "local_value_network", create_target_params=self.delay_value, ) self.convert_to_functional( mixer_network, "mixer_network", create_target_params=self.delay_value, ) self.global_value_network.module[0] = self.local_value_network self.global_value_network.module[1] = self.mixer_network self.global_value_network_in_keys = global_value_network.in_keys self.loss_function = loss_function if action_space is None: # infer from value net try: action_space = local_value_network.spec except AttributeError: # let's try with action_space then try: action_space = local_value_network.action_space except AttributeError: raise ValueError(self.ACTION_SPEC_ERROR) if action_space is None: warnings.warn( "action_space was not specified. QMixerLoss will default to 'one-hot'." "This behavior will be deprecated soon and a space will have to be passed." "Check the QMixerLoss documentation to see how to pass the action space. " ) action_space = "one-hot" self.action_space = _find_action_space(action_space) if gamma is not None: raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR) def _forward_value_estimator_keys(self, **kwargs) -> None: if self._value_estimator is not None: self._value_estimator.set_keys( advantage=self.tensor_keys.advantage, value_target=self.tensor_keys.value_target, value=self.tensor_keys.global_value, reward=self.tensor_keys.reward, done=self.tensor_keys.done, terminated=self.tensor_keys.terminated, ) self._set_in_keys() def _set_in_keys(self): keys = [ self.tensor_keys.action, ("next", self.tensor_keys.reward), ("next", self.tensor_keys.done), ("next", self.tensor_keys.terminated), *self.global_value_network.in_keys, *[("next", key) for key in self.global_value_network.in_keys], ] self._in_keys = list(set(keys)) @property def in_keys(self): if self._in_keys is None: self._set_in_keys() return self._in_keys def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams): if value_type is None: value_type = self.default_value_estimator self.value_type = value_type hp = dict(default_value_kwargs(value_type)) if hasattr(self, "gamma"): hp["gamma"] = self.gamma hp.update(hyperparams) if value_type is ValueEstimators.TD1: self._value_estimator = TD1Estimator( **hp, value_network=self.global_value_network ) elif value_type is ValueEstimators.TD0: self._value_estimator = TD0Estimator( **hp, value_network=self.global_value_network ) elif value_type is ValueEstimators.GAE: raise NotImplementedError( f"Value type {value_type} it not implemented for loss {type(self)}." ) elif value_type is ValueEstimators.TDLambda: self._value_estimator = TDLambdaEstimator( **hp, value_network=self.global_value_network ) else: raise NotImplementedError(f"Unknown value type {value_type}") tensor_keys = { "advantage": self.tensor_keys.advantage, "value_target": self.tensor_keys.value_target, "value": self.tensor_keys.global_value, "reward": self.tensor_keys.reward, "done": self.tensor_keys.done, "terminated": self.tensor_keys.terminated, } self._value_estimator.set_keys(**tensor_keys) @dispatch def forward(self, tensordict: TensorDictBase) -> TensorDict: td_copy = tensordict.clone(False) with self.local_value_network_params.to_module(self.local_value_network): self.local_value_network( td_copy, ) action = tensordict.get(self.tensor_keys.action) pred_val = td_copy.get( self.tensor_keys.action_value ) # [*B, n_agents, n_actions] if self.action_space == "categorical": if action.shape != pred_val.shape: # unsqueeze the action if it lacks on trailing singleton dim action = action.unsqueeze(-1) pred_val_index = torch.gather(pred_val, -1, index=action) else: action = action.to(torch.float) pred_val_index = (pred_val * action).sum(-1, keepdim=True) td_copy.set(self.tensor_keys.local_value, pred_val_index) # [*B, n_agents, 1] with self.mixer_network_params.to_module(self.mixer_network): self.mixer_network(td_copy) pred_val_index = td_copy[self.tensor_keys.global_value].squeeze(-1) # [*B] this is global and shared among the agents as will be the target target_value = self.value_estimator.value_estimate( td_copy, target_params=self._cached_target_params, ).squeeze(-1) with torch.no_grad(): priority_tensor = (pred_val_index - target_value).pow(2) priority_tensor = priority_tensor.unsqueeze(-1) if tensordict.device is not None: priority_tensor = priority_tensor.to(tensordict.device) tensordict.set( self.tensor_keys.priority, priority_tensor, inplace=True, ) loss = distance_loss(pred_val_index, target_value, self.loss_function) return TensorDict({"loss": loss.mean()}, []) @property @_cache_values def _cached_target_params(self): target_params = TensorDict( { "module": { "0": self.target_local_value_network_params, "1": self.target_mixer_network_params, } }, batch_size=self.target_local_value_network_params.batch_size, device=self.target_local_value_network_params.device, ) return target_params