# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from copy import deepcopy from dataclasses import dataclass from typing import Tuple import torch from tensordict import TensorDict, TensorDictBase, TensorDictParams from tensordict.nn import dispatch, TensorDictModule from tensordict.utils import NestedKey, unravel_key from torchrl.modules.tensordict_module.actors import ActorCriticWrapper from torchrl.objectives.common import LossModule from torchrl.objectives.utils import ( _cache_values, _GAMMA_LMBDA_DEPREC_ERROR, _reduce, default_value_kwargs, distance_loss, ValueEstimators, ) from torchrl.objectives.value import TD0Estimator, TD1Estimator, TDLambdaEstimator class DDPGLoss(LossModule): """The DDPG Loss class. Args: actor_network (TensorDictModule): a policy operator. value_network (TensorDictModule): a Q value operator. loss_function (str): loss function for the value discrepancy. Can be one of "l1", "l2" or "smooth_l1". delay_actor (bool, optional): whether to separate the target actor networks from the actor networks used for data collection. Default is ``False``. delay_value (bool, optional): whether to separate the target value networks from the value networks used for data collection. Default is ``True``. separate_losses (bool, optional): if ``True``, shared parameters between policy and critic will only be trained on the policy loss. Defaults to ``False``, i.e., gradients are propagated to shared parameters for both policy and critic losses. reduction (str, optional): Specifies the reduction to apply to the output: ``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied, ``"mean"``: the sum of the output will be divided by the number of elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``. Examples: >>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> batch = [2, ] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) This class is compatible with non-tensordict based modules too and can be used without recurring to any tensordict-related primitive. In this case, the expected keyword arguments are: ``["next_reward", "next_done", "next_terminated"]`` + in_keys of the actor_network and value_network. The return value is a tuple of tensors in the following order: ``["loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max"]`` Examples: >>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> loss_actor, loss_value, pred_value, target_value, pred_value_max, target_value_max = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward() The output keys can also be filtered using the :meth:`DDPGLoss.select_out_keys` method. Examples: >>> loss.select_out_keys('loss_actor', 'loss_value') >>> loss_actor, loss_value = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward() """ @dataclass class _AcceptedKeys: """Maintains default values for all configurable tensordict keys. This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their default values. Attributes: state_action_value (NestedKey): The input tensordict key where the state action value is expected. Will be used for the underlying value estimator as value key. Defaults to ``"state_action_value"``. priority (NestedKey): The input tensordict key where the target priority is written to. Defaults to ``"td_error"``. reward (NestedKey): The input tensordict key where the reward is expected. Will be used for the underlying value estimator. Defaults to ``"reward"``. done (NestedKey): The key in the input TensorDict that indicates whether a trajectory is done. Will be used for the underlying value estimator. Defaults to ``"done"``. terminated (NestedKey): The key in the input TensorDict that indicates whether a trajectory is terminated. Will be used for the underlying value estimator. Defaults to ``"terminated"``. """ state_action_value: NestedKey = "state_action_value" priority: NestedKey = "td_error" reward: NestedKey = "reward" done: NestedKey = "done" terminated: NestedKey = "terminated" default_keys = _AcceptedKeys() default_value_estimator: ValueEstimators = ValueEstimators.TD0 out_keys = [ "loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max", ] actor_network: TensorDictModule value_network: actor_network actor_network_params: TensorDictParams value_network_params: TensorDictParams target_actor_network_params: TensorDictParams target_value_network_params: TensorDictParams def __init__( self, actor_network: TensorDictModule, value_network: TensorDictModule, *, loss_function: str = "l2", delay_actor: bool = False, delay_value: bool = True, gamma: float = None, separate_losses: bool = False, reduction: str = None, ) -> None: self._in_keys = None if reduction is None: reduction = "mean" super().__init__() self.delay_actor = delay_actor self.delay_value = delay_value actor_critic = ActorCriticWrapper(actor_network, value_network) params = TensorDict.from_module(actor_critic) params_meta = params.apply( self._make_meta_params, device=torch.device("meta"), filter_empty=False ) with params_meta.to_module(actor_critic): self.__dict__["actor_critic"] = deepcopy(actor_critic) self.convert_to_functional( actor_network, "actor_network", create_target_params=self.delay_actor, ) if separate_losses: # we want to make sure there are no duplicates in the params: the # params of critic must be refs to actor if they're shared policy_params = list(actor_network.parameters()) else: policy_params = None self.convert_to_functional( value_network, "value_network", create_target_params=self.delay_value, compare_against=policy_params, ) self.actor_critic.module[0] = self.actor_network self.actor_critic.module[1] = self.value_network self.actor_in_keys = actor_network.in_keys self.value_exclusive_keys = set(self.value_network.in_keys) - ( set(self.actor_in_keys) | set(self.actor_network.out_keys) ) self.loss_function = loss_function self.reduction = reduction if gamma is not None: raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR) def _forward_value_estimator_keys(self, **kwargs) -> None: if self._value_estimator is not None: self._value_estimator.set_keys( value=self._tensor_keys.state_action_value, reward=self._tensor_keys.reward, done=self._tensor_keys.done, terminated=self._tensor_keys.terminated, ) self._set_in_keys() def _set_in_keys(self): in_keys = { unravel_key(("next", self.tensor_keys.reward)), unravel_key(("next", self.tensor_keys.done)), unravel_key(("next", self.tensor_keys.terminated)), *self.actor_in_keys, *[unravel_key(("next", key)) for key in self.actor_in_keys], *self.value_network.in_keys, *[unravel_key(("next", key)) for key in self.value_network.in_keys], } self._in_keys = sorted(in_keys, key=str) @property def in_keys(self): if self._in_keys is None: self._set_in_keys() return self._in_keys @in_keys.setter def in_keys(self, values): self._in_keys = values @dispatch def forward(self, tensordict: TensorDictBase) -> TensorDict: """Computes the DDPG losses given a tensordict sampled from the replay buffer. This function will also write a "td_error" key that can be used by prioritized replay buffers to assign a priority to items in the tensordict. Args: tensordict (TensorDictBase): a tensordict with keys ["done", "terminated", "reward"] and the in_keys of the actor and value networks. Returns: a tuple of 2 tensors containing the DDPG loss. """ loss_value, metadata = self.loss_value(tensordict) loss_actor, metadata_actor = self.loss_actor(tensordict) metadata.update(metadata_actor) td_out = TensorDict( source={"loss_actor": loss_actor, "loss_value": loss_value, **metadata}, batch_size=[], ) return td_out def loss_actor( self, tensordict: TensorDictBase, ) -> [torch.Tensor, dict]: td_copy = tensordict.select( *self.actor_in_keys, *self.value_exclusive_keys, strict=False ).detach() with self.actor_network_params.to_module(self.actor_network): td_copy = self.actor_network(td_copy) with self._cached_detached_value_params.to_module(self.value_network): td_copy = self.value_network(td_copy) loss_actor = -td_copy.get(self.tensor_keys.state_action_value).squeeze(-1) metadata = {} loss_actor = _reduce(loss_actor, self.reduction) return loss_actor, metadata def loss_value( self, tensordict: TensorDictBase, ) -> Tuple[torch.Tensor, dict]: # value loss td_copy = tensordict.select(*self.value_network.in_keys, strict=False).detach() with self.value_network_params.to_module(self.value_network): self.value_network(td_copy) pred_val = td_copy.get(self.tensor_keys.state_action_value).squeeze(-1) target_value = self.value_estimator.value_estimate( tensordict, target_params=self._cached_target_params ).squeeze(-1) # td_error = pred_val - target_value loss_value = distance_loss( pred_val, target_value, loss_function=self.loss_function ) td_error = (pred_val - target_value).pow(2) td_error = td_error.detach() if tensordict.device is not None: td_error = td_error.to(tensordict.device) tensordict.set( self.tensor_keys.priority, td_error, inplace=True, ) with torch.no_grad(): metadata = { "td_error": td_error, "pred_value": pred_val, "target_value": target_value, "target_value_max": target_value.max(), "pred_value_max": pred_val.max(), } loss_value = _reduce(loss_value, self.reduction) return loss_value, metadata def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams): if value_type is None: value_type = self.default_value_estimator self.value_type = value_type hp = dict(default_value_kwargs(value_type)) if hasattr(self, "gamma"): hp["gamma"] = self.gamma hp.update(hyperparams) if value_type == ValueEstimators.TD1: self._value_estimator = TD1Estimator(value_network=self.actor_critic, **hp) elif value_type == ValueEstimators.TD0: self._value_estimator = TD0Estimator(value_network=self.actor_critic, **hp) elif value_type == ValueEstimators.GAE: raise NotImplementedError( f"Value type {value_type} it not implemented for loss {type(self)}." ) elif value_type == ValueEstimators.TDLambda: self._value_estimator = TDLambdaEstimator( value_network=self.actor_critic, **hp ) else: raise NotImplementedError(f"Unknown value type {value_type}") tensor_keys = { "value": self.tensor_keys.state_action_value, "reward": self.tensor_keys.reward, "done": self.tensor_keys.done, "terminated": self.tensor_keys.terminated, } self._value_estimator.set_keys(**tensor_keys) @property @_cache_values def _cached_target_params(self): target_params = TensorDict( { "module": { "0": self.target_actor_network_params, "1": self.target_value_network_params, } }, batch_size=self.target_actor_network_params.batch_size, device=self.target_actor_network_params.device, ) return target_params @property @_cache_values def _cached_detached_value_params(self): return self.value_network_params.detach()