import os.path as osp import torch from tqdm import tqdm from torch_geometric.datasets import Reddit from torch_geometric.loader import NeighborLoader from torch_geometric.nn import DeepGraphInfomax, SAGEConv device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Reddit') dataset = Reddit(path) data = dataset[0].to(device, 'x', 'edge_index') train_loader = NeighborLoader(data, num_neighbors=[10, 10, 25], batch_size=256, shuffle=True, num_workers=12) test_loader = NeighborLoader(data, num_neighbors=[10, 10, 25], batch_size=256, num_workers=12) class Encoder(torch.nn.Module): def __init__(self, in_channels, hidden_channels): super().__init__() self.convs = torch.nn.ModuleList([ SAGEConv(in_channels, hidden_channels), SAGEConv(hidden_channels, hidden_channels), SAGEConv(hidden_channels, hidden_channels) ]) self.activations = torch.nn.ModuleList() self.activations.extend([ torch.nn.PReLU(hidden_channels), torch.nn.PReLU(hidden_channels), torch.nn.PReLU(hidden_channels) ]) def forward(self, x, edge_index, batch_size): for conv, act in zip(self.convs, self.activations): x = conv(x, edge_index) x = act(x) return x[:batch_size] def corruption(x, edge_index, batch_size): return x[torch.randperm(x.size(0))], edge_index, batch_size model = DeepGraphInfomax( hidden_channels=512, encoder=Encoder(dataset.num_features, 512), summary=lambda z, *args, **kwargs: torch.sigmoid(z.mean(dim=0)), corruption=corruption).to(device) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) def train(epoch): model.train() total_loss = total_examples = 0 for batch in tqdm(train_loader, desc=f'Epoch {epoch:02d}'): optimizer.zero_grad() pos_z, neg_z, summary = model(batch.x, batch.edge_index, batch.batch_size) loss = model.loss(pos_z, neg_z, summary) loss.backward() optimizer.step() total_loss += float(loss) * pos_z.size(0) total_examples += pos_z.size(0) return total_loss / total_examples @torch.no_grad() def test(): model.eval() zs = [] for batch in tqdm(test_loader, desc='Evaluating'): pos_z, _, _ = model(batch.x, batch.edge_index, batch.batch_size) zs.append(pos_z.cpu()) z = torch.cat(zs, dim=0) train_val_mask = data.train_mask | data.val_mask acc = model.test(z[train_val_mask], data.y[train_val_mask], z[data.test_mask], data.y[data.test_mask], max_iter=10000) return acc for epoch in range(1, 31): loss = train(epoch) print(f'Epoch {epoch:02d}, Loss: {loss:.4f}') test_acc = test() print(f'Test Accuracy: {test_acc:.4f}')