Skip to content

Efficient Visual Tracking with Exemplar Transformers [WACV2023]

Notifications You must be signed in to change notification settings

pblatter/ettrack

Repository files navigation

E.T.Track - Efficient Visual Tracking with Exemplar Transformers

Official implementation of E.T.Track. E.T.Track utilized our proposed Exemplar Transformer, a transformer module utilizing a single instance level attention layer for realtime visual object tracking. E.T.Track is up to 8x faster than other transformer-based models, and consistently outperforms competing lightweight trackers that can operate in realtime on standard CPUs.

E.T.Track The standard attention vs our Exemplar Attention on the right

Installation

Install dependencies

Install the python environment using the environment file ettrack_env.yml.

Generate the relevant files:

python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"
  • Modify local.py. Modify the path files for the evaluation in pytracking/evaluation/local.py

Evaluation

We evaluate our models using PyTracking. The sequences comparing E.T.Track and LT-Mobile in the ''Video Visualizations'' section can be found here.

  • Add the correct dataset in pytracking/experiments/myexperiments.py (default: OTB-100)
  • Run python3 -m pytracking.run_experiment myexperiments et_tracker --threads 0

Citation

If you use this code, please consider citing the following paper:

@inproceedings{blatter2023efficient,
  title={Efficient visual tracking with exemplar transformers},
  author={Blatter, Philippe and Kanakis, Menelaos and Danelljan, Martin and Van Gool, Luc},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1571--1581},
  year={2023}
}

About

Efficient Visual Tracking with Exemplar Transformers [WACV2023]

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published