import math
import copy
import time
import os
import typing
import random
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchtext import data, datasets
import torchtext
from tqdm import tqdm
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn
import spacy
import gc
from transformer import *
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
# Load spacy tokenizers.
spacy_en = spacy.load('en')
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
BOS_WORD = ''
EOS_WORD = ''
BLANK_WORD = ""
SRC = data.Field(tokenize=tokenize_en, pad_token=BLANK_WORD)
TGT = data.Field(tokenize=tokenize_en, init_token = BOS_WORD,
eos_token = EOS_WORD, pad_token=BLANK_WORD)
print("Loading Dataset")
full = pd.read_csv(os.path.join("data", "full_unique.csv"))
english_lines = list(full["edited_version"])
spanish_lines = list(full["original_clean"])
print("### There are {} lines of data ####".format(len(english_lines)))
fields = (["src", SRC], ["trg", TGT])
examples = [torchtext.data.Example.fromlist((spanish_lines[i], english_lines[i]), fields ) for i in range(len(english_lines))]
MAX_LEN = 200
train, val = torchtext.data.Dataset(examples, fields=fields, filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and
len(vars(x)['trg']) <= MAX_LEN).split()
list_of_val = []
for example in val.examples:
new_dict = {"original": " ".join(example.src), "edited": " ".join(example.trg)}
list_of_val.append(new_dict)
MIN_FREQ = 1
SRC.build_vocab(train.src, min_freq=MIN_FREQ)
TGT.build_vocab(train.trg, min_freq=MIN_FREQ)
gc.collect()
val_df = pd.DataFrame(list_of_val)
val_df.to_csv("val_data.csv")
pad_idx = TGT.vocab.stoi[""]
model = TransformerModel(len(SRC.vocab), len(TGT.vocab), N=2).cuda()
device = torch.device('cuda')
def greedy_decode(model, src, src_mask, max_len, start_symbol):
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
for i in range(max_len-1):
out = model.decode(memory, src_mask,
Variable(ys),
Variable(subsequent_mask(ys.size(1))
.type_as(src.data)))
prob = model.generator(out[:, -1])
_, next_word = torch.max(prob, dim = 1)
next_word = next_word.data[0]
ys = torch.cat([ys,
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
return ys
def eval_text(valid_iter, model, n_samples: int = 2):
samples = []
for i, batch in enumerate(valid_iter):
new_sample = {}
if i >= n_samples:
return samples
src = batch.src.transpose(0, 1)[:1].cuda()
src_mask = (src != SRC.vocab.stoi[""]).unsqueeze(-2).cuda()
out = greedy_decode(model, src, src_mask,
max_len=60, start_symbol=TGT.vocab.stoi[""])
instance = ""
for i in range(0, src.size(1)):
sym = SRC.vocab.itos[src[0, i]]
if sym == "": break
instance += sym + " "
new_sample["original"] = instance
instance = ""
for i in range(1, out.size(1)):
sym = TGT.vocab.itos[out[0, i]]
if sym == "": break
instance += sym + " "
new_sample["translated"] = instance
instance = ""
for i in range(1, batch.trg.size(0)):
sym = TGT.vocab.itos[batch.trg.data[i, 0]]
if sym == "": break
instance += sym + " "
new_sample["ground_truth"] = instance
samples.append(new_sample)
return samples
def eval_all_text(valid_iter, model, n_samples: int = 2):
samples = []
count = 0
for i, batch in enumerate(valid_iter):
print("On batch ", i)
if i >= n_samples:
return samples
print("Eval batch with size", batch.src.shape)
for sentence_idx in range(batch.src.transpose(0, 1).shape[0]):
new_sample = {}
count += 1
src = batch.src.transpose(0, 1)[sentence_idx:sentence_idx+1].cuda()
src_mask = (src != SRC.vocab.stoi[""]).unsqueeze(-2).cuda()
out = greedy_decode(model, src, src_mask,
max_len=60, start_symbol=TGT.vocab.stoi[""])
instance = ""
for i in range(0, src.size(1)):
sym = SRC.vocab.itos[src[0, i]]
if sym == "": break
instance += sym + " "
new_sample["original"] = instance
instance = ""
for i in range(1, out.size(1)):
sym = TGT.vocab.itos[out[0, i]]
if sym == "": break
instance += sym + " "
new_sample["translated"] = instance
instance = ""
for i in range(1, batch.trg.size(0)):
sym = TGT.vocab.itos[batch.trg.data[i, sentence_idx]]
if sym == "": break
instance += sym + " "
new_sample["edited"] = instance
samples.append(new_sample)
print("There were new sents", count)
assert count == len(samples), "did not match up"
return samples
def add_examples(text: typing.List[str], MAX_LEN=200, BATCH_SIZE=1000):
examples = [torchtext.data.Example.fromlist((text[i], ""), fields ) for i in range(len(text))]
data = torchtext.data.Dataset(examples, fields=fields, filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and
len(vars(x)['trg']) <= MAX_LEN)
new_iter = DataIterator(data, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
return new_iter
def scope(args: argparse.Namespace):
criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1)
criterion.cuda()
BATCH_SIZE = 1000
train_iter = DataIterator(train, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=True)
valid_iter = DataIterator(val, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
len_iter_train = len(train) // BATCH_SIZE
model_opt = torch.optim.Adam(model.parameters(), lr=5e-4)
loop = tqdm(total=args.n_epochs * len_iter_train, position=0, leave=True)
loss_list = []
for epoch in range(args.n_epochs):
model.train()
loss, loop = run_epoch((rebatch(pad_idx, b) for b in train_iter),
model,
LossFunction(model.generator, criterion, model_opt), loop, epoch)
loss_list.append(loss)
model.eval()
samples = eval_text(valid_iter, model)
for sample in samples:
print(sample)
# outside sources
text = []
if args.interactive:
print("Input the number of examples first, then each example")
new_examples = int(input())
for i in range(new_examples):
text.append(str(input()))
new_data_iter = add_examples(text)
samples = eval_text(new_data_iter, model)
for sample in samples:
print(sample)
else:
new_examples = 1 #int(input())
for i in range(new_examples):
# text.append(str(input()))
text.append(str("Trump tweeted as she was testifying: Was it witness tampering?"))
new_data_iter = add_examples(text)
samples = eval_text(new_data_iter, model)
for sample in samples:
print(sample)
if epoch and epoch % 10 == 0:
if not os.path.isdir("models"):
os.makedirs("models")
torch.save(model.state_dict(), os.path.join("models", "{}-{}-model.pt".format(epoch, int(time.time()))))
plt.plot(list(range(len(loss_list))), loss_list)
plt.savefig("loss_plot.png")
def evaluate(args: argparse.Namespace):
criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1)
criterion.cuda()
BATCH_SIZE = 1000
valid_iter = DataIterator(val, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
model_opt = torch.optim.Adam(model.parameters(), lr=5e-4)
samples = eval_all_text(valid_iter, model, n_samples=len(val))
if args.verbose:
for sample in samples:
print(sample)
if args.save_output:
checkpoint_name = args.checkpoint.split("/")[-1][:-2]
pd.DataFrame(samples).to_csv(f"eval_data_only_{checkpoint_name}.csv")
# outside sources
text = []
if args.interactive:
print("Input the number of examples first, then each example")
new_examples = int(input())
for i in range(new_examples):
text.append(str(input()))
new_data_iter = add_examples(text)
samples = eval_text(new_data_iter, model)
for sample in samples:
print(sample)
elif args.verbose:
new_examples = 1
for i in range(new_examples):
text.append(str("Trump tweeted as she was testifying: Was it witness tampering?"))
new_data_iter = add_examples(text)
samples = eval_text(new_data_iter, model)
for sample in samples:
print(sample)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--verbose", action="store_true", help="whether to print or not", default=False)
parser.add_argument("-s", "--save_output", action="store_true", help="save output of evaluation", default=False)
parser.add_argument("-i", "--interactive", action="store_true", help="interact with the model", default=False)
parser.add_argument("-e", "--evaluate", action="store_true", help="interact with the model", default=False)
parser.add_argument("-all", "--eval_all", action="store_true", help="evall all checkpoints", default=False)
parser.add_argument("-n", "--n_epochs", type=int, help="number of epochs to run", default=500)
parser.add_argument("-c", "--checkpoint", type=str, help="the location of the checkpoint to run", default="models/90-1574381105-model.pt")
parser.add_argument("-d", "--data_folder", type=str, help="the location of where the data is", default="data/full_unique.csv") # TODO implement this
args = parser.parse_args()
if not args.evaluate:
scope(args)
elif args.evaluate and not args.eval_all:
print("Evaluating one")
model.load_state_dict(torch.load(args.checkpoint))
model.eval()
evaluate(args)
elif args.eval_all:
print("Evaluating all")
for checkpoint_path in glob.glob("models/*.pt"):
args.checkpoint = checkpoint_path
model.load_state_dict(torch.load(args.checkpoint))
model.eval()
evaluate(args)
else:
raise NotImplementedError()