Open RL Benchmark is a comprehensive collection of tracked experiments for RL. It aims to make it easier for RL practitioners to pull and compare all kinds of metrics from reputable RL libraries like Stable-baselines3, Tianshou, CleanRL, and others.
- 💾 GitHub Repo: source code and more docs.
- 📜 Design docs: our motivation and vision.
- 🔗 Open RL Benchmark reports: W&B reports with tracked Atari, MuJoCo experiments from SB3, CleanRL, and others.
You can install it via pip or the dev setup.
pip install openrlbenchmark --upgrade
Prerequisites:
- Python >=3.7.1,<3.10 (not yet 3.10)
- Poetry 1.2.1+
git clone https://github.com/openrlbenchmark/openrlbenchmark.git
cd openrlbenchmark
poetry install
Open RL Benchmark provides an RLops CLI to pull and compare metrics from Weights and Biases. The following example shows how to compare the performance of SB3's ppo, a2c, ddpg, ppo_lstm, sac, td3, ppo, trpo, CleanRL's sac on HalfCheetahBulletEnv-v0
.
python -m openrlbenchmark.rlops \
--filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' \
'ppo_continuous_action?tag=v1.0.0-27-gde3f410&seed=1&seed=2&seed=3&cl=CleanRL PPO' \
--filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' \
'baselines-ppo2-mlp?cl=openai/baselines PPO2' \
--env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
--env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 3 \
--rliable \
--rc.score_normalization_method maxmin \
--rc.normalized_score_threshold 1.0 \
--rc.sample_efficiency_plots \
--rc.sample_efficiency_and_walltime_efficiency_method Median \
--rc.performance_profile_plots \
--rc.aggregate_metrics_plots \
--rc.sample_efficiency_num_bootstrap_reps 10 \
--rc.performance_profile_num_bootstrap_reps 10 \
--rc.interval_estimates_num_bootstrap_reps 10 \
--output-filename static/0compare \
--scan-history
Here, we created multiple filters. The first string in the first filter is '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return'
, which is a query string that specifies the following:
we
: the W&B entity namewpn
: the W&B project nameceik
: the custom key for the environment idcen
: the custom key for the experiment namemetric
: the metric we are interested in
The second string in the first filter is 'ppo_continuous_action?tag=v1.0.0-27-gde3f410&seed=1&seed=2&seed=3&cl=CleanRL PPO'
, which is a query string that specifies the following:
exp_name
: the experiment name we are interested in, such asppo_continuous_action
in this casetag
: the tag we are interested inparams
: the parameters or configurations of interest, such asseed
- Due to W&B's handling of nested configuration data, the exact key for a parameter might vary. In most cases, parameters can be index directly by their
key
orkey.value
. Hence,seed
orseed.value
could be the correct key when trying to index this parameter in https://wandb.ai/openrlbenchmark/cleanrl/runs/1bvy71i6/overview. Nonetheless, for nested configurations, the correct reference must navigate through the structure, such astrl_ppo_trainer_config.value.lam
to index thelam
parameter. To see the complete config in its entirety, click on the "View Raw Data" button available on the config section of a W&B experiment overview page, like what is available at https://wandb.ai/costa-huang/cleanRL/runs/3nhnaboz/overview. - The custom keys for referencing specific configurations, such as the environment id (
ceik
) and the experiment name (cen
), follow the same indexing convention as the parameters.
- Due to W&B's handling of nested configuration data, the exact key for a parameter might vary. In most cases, parameters can be index directly by their
So we are fetching metrics from https://wandb.ai/openrlbenchmark/cleanrl. The environment id is stored in the env_id
key, and the experiment name is stored in the exp_name
key. The metric we are interested in is charts/episodic_return
.
Similarly, we are fetching metrics from https://wandb.ai/openrlbenchmark/baselines. The environment id is stored in the env
key, and the experiment name is stored in the exp_name
key. The metric we are interested in is charts/episodic_return
. You can also customize the legend with the cl
query string, such as baselines-ppo2-mlp?cl=openai/baselines PPO2
.
The labels of the figure can be customized with the --pc.xlabel
and --pc.ylabel
flags. You can also specify the maximum number of timesteps to plot with --pc.max_steps
. The --pc.ncols
flag specifies the number of columns in the figure. The --pc.ncols-legend
flag specifies the number of columns in the legend. The --output-filename
flag specifies the filename of the output figure
The --rliable
toggles our rliable integration, and its configuration can be tweeked via --rc
. The command above generates the following plot:
The --report
tag also generates a wandb report
The command also generates a compare.png
, a compare.md
, and a compare.csv
in the current directory.
Learning curves: the compare.png
shows the learning curves which subsamples 10000 data points and and interpolate. The curves are smoothed by a rolling average with a window size 100 and their shaded region represents the standard deviation.
Result table: the compare.md
and compare.csv
shows the average episodic return of the last 100 episodes. For each random seed
Warning We recommend you to use
--scan-history
which pullts all of the data points, but initially it will cache the data and may take a while to run. If you don't use--scan-history
, it will only pull 500 data points from wandb randomly, which could generate different learning curves each time you run the command.
We introduced an experimental offline mode. Sometimes even with caching --scan-history
the script can still take a long time if there are too many environments or experiments. This is because we are still calling many wandb.Api().runs(..., filters)
under the hood.
No worries though. When running with --scan-history
, we also automatically build a local sqlite
database to store the metadata of runs. Then, you can run python -m openrlbenchmark.rlops ... --scan-history --offline
to generate the plots without having access to the internet. It should considerably speed up the plotting process as well. We are still working on improving the offline mode, so please let us know if you encounter any issues.
- CleanRL
ceik
:env_id
cen
:exp_name
(e.g.,sac_continuous_action
,ppo_continuous_action
,ppo_atari
)metric
:charts/episodic_return
- Stable-baselines3
ceik
:env
cen
:algo
(e.g.,sac
,ppo
,a2c
)metric
:rollout/ep_rew_mean
oreval/mean_reward
- ikostrikov/jaxrl
ceik
:env_name
cen
:algo
(e.g.,sac
)metric
:training/return
orevaluation/average_returns
- baselines
ceik
:env
cen
:alg
(e.g.,ppo2
)metric
:charts/episodic_return
oreprewmean
- sbx
ceik
:env
cen
:alg
(e.g.,sac
,tqc
)metric
:rollout/ep_rew_mean
oreval/mean_reward
- Tianshou
ceik
:task
cen
:algo_name
(e.g.,ppo
,iqn
)metric
:test/reward
- MORL-Baselines
ceik
:env_id
cen
:algo
(e.g.,PGMORL
,PCN
)metric
:eval/hypervolume
,eval/igd
,eval/sparsity
,eval/eum
,eval/mul
The following libraries have some recorded experiments:
- openai/phasic-policy-gradient (has some metrics)
ceik
:env_name
cen
:arch
(shared
)metric
:charts/episodic_return
- sfujim/TD3 (has some metrics)
ceik
:env
cen
:policy
(e.g.,TD3
)metric
:charts/episodic_return
Sometimes the same environments could have different names in different libraries. For example, openai/baselines
uses BreakoutNoFrameskip-v4
while EnvPool uses Breakout-v5
. To compare the two libraries, we need to specify the env_id
for CleanRL
and env
for openai/baselines
. In this case, can specify the corresponding env_ids
for each filter.
For Atari games, we can toggle --rc.score_normalization_method atari
option to use human-normalized scores for rliable
analysis.
python -m openrlbenchmark.rlops \
--filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-cnn' \
--filters '?we=openrlbenchmark&wpn=envpool-atari&ceik=env_id&cen=exp_name&metric=charts/avg_episodic_return' 'ppo_atari_envpool_xla_jax_truncation' \
--env-ids AlienNoFrameskip-v4 AmidarNoFrameskip-v4 AssaultNoFrameskip-v4 AsterixNoFrameskip-v4 AsteroidsNoFrameskip-v4 AtlantisNoFrameskip-v4 BankHeistNoFrameskip-v4 BattleZoneNoFrameskip-v4 BeamRiderNoFrameskip-v4 BerzerkNoFrameskip-v4 BowlingNoFrameskip-v4 BoxingNoFrameskip-v4 BreakoutNoFrameskip-v4 CentipedeNoFrameskip-v4 ChopperCommandNoFrameskip-v4 CrazyClimberNoFrameskip-v4 DefenderNoFrameskip-v4 DemonAttackNoFrameskip-v4 DoubleDunkNoFrameskip-v4 EnduroNoFrameskip-v4 FishingDerbyNoFrameskip-v4 FreewayNoFrameskip-v4 FrostbiteNoFrameskip-v4 GopherNoFrameskip-v4 GravitarNoFrameskip-v4 HeroNoFrameskip-v4 IceHockeyNoFrameskip-v4 PrivateEyeNoFrameskip-v4 QbertNoFrameskip-v4 RiverraidNoFrameskip-v4 RoadRunnerNoFrameskip-v4 RobotankNoFrameskip-v4 SeaquestNoFrameskip-v4 SkiingNoFrameskip-v4 SolarisNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 StarGunnerNoFrameskip-v4 SurroundNoFrameskip-v4 TennisNoFrameskip-v4 TimePilotNoFrameskip-v4 TutankhamNoFrameskip-v4 UpNDownNoFrameskip-v4 VentureNoFrameskip-v4 VideoPinballNoFrameskip-v4 WizardOfWorNoFrameskip-v4 YarsRevengeNoFrameskip-v4 ZaxxonNoFrameskip-v4 JamesbondNoFrameskip-v4 KangarooNoFrameskip-v4 KrullNoFrameskip-v4 KungFuMasterNoFrameskip-v4 MontezumaRevengeNoFrameskip-v4 MsPacmanNoFrameskip-v4 NameThisGameNoFrameskip-v4 PhoenixNoFrameskip-v4 PitfallNoFrameskip-v4 PongNoFrameskip-v4 \
--env-ids Alien-v5 Amidar-v5 Assault-v5 Asterix-v5 Asteroids-v5 Atlantis-v5 BankHeist-v5 BattleZone-v5 BeamRider-v5 Berzerk-v5 Bowling-v5 Boxing-v5 Breakout-v5 Centipede-v5 ChopperCommand-v5 CrazyClimber-v5 Defender-v5 DemonAttack-v5 DoubleDunk-v5 Enduro-v5 FishingDerby-v5 Freeway-v5 Frostbite-v5 Gopher-v5 Gravitar-v5 Hero-v5 IceHockey-v5 PrivateEye-v5 Qbert-v5 Riverraid-v5 RoadRunner-v5 Robotank-v5 Seaquest-v5 Skiing-v5 Solaris-v5 SpaceInvaders-v5 StarGunner-v5 Surround-v5 Tennis-v5 TimePilot-v5 Tutankham-v5 UpNDown-v5 Venture-v5 VideoPinball-v5 WizardOfWor-v5 YarsRevenge-v5 Zaxxon-v5 Jamesbond-v5 Kangaroo-v5 Krull-v5 KungFuMaster-v5 MontezumaRevenge-v5 MsPacman-v5 NameThisGame-v5 Phoenix-v5 Pitfall-v5 Pong-v5 \
--no-check-empty-runs \
--pc.ncols 5 \
--pc.ncols-legend 2 \
--rliable \
--rc.score_normalization_method atari \
--rc.normalized_score_threshold 8.0 \
--rc.sample_efficiency_plots \
--rc.sample_efficiency_and_walltime_efficiency_method Median \
--rc.performance_profile_plots \
--rc.aggregate_metrics_plots \
--rc.sample_efficiency_num_bootstrap_reps 50000 \
--rc.performance_profile_num_bootstrap_reps 2000 \
--rc.interval_estimates_num_bootstrap_reps 2000 \
--output-filename static/cleanrl_vs_baselines_atari \
--scan-history
Furthermore, the --rliable
integration generates cleanrl_vs_baselines_iqm_profile.png
, the Interquartile Mean (IQM) and performance profile (Agarwal et al., 2022), and cleanrl_vs_baselines_hns_aggregate.png
, the aggregate human-normalized scores with Stratified Bootstrap Confidence Intervals (see @araffin's excellent blog post explainer).
python -m openrlbenchmark.rlops \
--filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-mlp' \
--filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'ppo_continuous_action?tag=v1.0.0-27-gde3f410' \
--filters '?we=openrlbenchmark&wpn=jaxrl&ceik=env_name&cen=algo&metric=training/return' 'sac' \
--env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 InvertedPendulum-v2 Humanoid-v2 Pusher-v2 \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 3 \
--output-filename static/baselines_vs_cleanrl_vs_jaxrl \
--scan-history
Experimental! API may change.
Sometimes you want to compare multiple metrics at once.
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metrics=charts/episodic_return&metrics=charts/episodic_length&metrics=charts/SPS&metrics=losses/actor_loss&metrics=losses/qf1_values&metrics=losses/qf1_loss' \
'ddpg_continuous_action?tag=pr-371' \
'ddpg_continuous_action?tag=pr-299' \
'ddpg_continuous_action?tag=rlops-pilot' \
'ddpg_continuous_action_jax?tag=pr-371-jax' \
'ddpg_continuous_action_jax?tag=pr-298' \
--env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 2 \
--output-filename static/multi-metrics \
--scan-history --offline
python -m openrlbenchmark.rlops \
--filters '?we=tianshou&wpn=atari.benchmark&ceik=task&cen=algo_name&metric=test/reward' 'iqn' 'ppo' 'rainbow' 'fqf' 'c51' 'dqn' 'qrdqn' \
--filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-cnn' \
--env-ids BreakoutNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 SeaquestNoFrameskip-v4 MsPacmanNoFrameskip-v4 EnduroNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4 \
--no-check-empty-runs \
--pc.ncols 4 \
--pc.ncols-legend 4 \
--output-filename static/baselines_vs_tianshou --scan-history
python -m openrlbenchmark.rlops \
--filters '?we=openrlbenchmark&wpn=phasic-policy-gradient&ceik=env_name&cen=arch&metric=charts/episodic_return' 'shared' \
--filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'ppo_procgen?tag=v1.0.0b1-4-g4ea73d9' 'ppg_procgen?tag=v1.0.0b1-4-g4ea73d9' \
--env-ids starpilot bossfight bigfish \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 3 \
--output-filename static/ppg_vs_cleanrl \
--scan-history
python -m openrlbenchmark.rlops \
--filters '?we=openrlbenchmark&wpn=sfujim-TD3&ceik=env&cen=policy&metric=charts/episodic_return' 'TD3' \
--filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'td3_continuous_action_jax?tag=pr-285' 'ddpg_continuous_action_jax?tag=pr-298' \
--env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 3 \
--output-filename static/td3_vs_cleanrl \
--scan-history
Notice the number of timesteps is adjusted using --pc.max_steps 400000
.
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum' \
'PGMORL?cl=PGMORL' \
'CAPQL?cl=CAPQL' \
'GPI-LS Continuous Action?cl=GPI-LS' \
'GPI-PD Continuous Action?cl=GPI-PD' \
--env-ids mo-halfcheetah-v4 mo-hopper-2d-v4 \
--pc.ncols 2 \
--pc.ncols-legend 4 \
--pc.xlabel 'Training steps' \
--pc.ylabel '' \
--pc.max_steps 400000 \
--output-filename morl/morl_continuous \
--scan-history
python -m openrlbenchmark.hns --files static/cleanrl_vs_baselines.csv static/machado_10M.csv static/machado_50M.csv
baselines-ppo2-cnn ({})
┣━━ median hns: 0.7959851540635047
┣━━ mean hns: 4.54588939893709
ppo_atari_envpool_xla_jax_truncation ({})
┣━━ median hns: 0.9783505154639175
┣━━ mean hns: 6.841083973256849
ppo_atari_envpool_xla_jax_truncation_machado_10M ({})
┣━━ median hns: 0.7347972972972973
┣━━ mean hns: 2.919095857954249
ppo_atari_envpool_xla_jax_truncation ({'metric': ['charts/avg_episodic_return']})
┣━━ median hns: 0.9783505154639175
┣━━ mean hns: 6.841083973256849
ppo_atari_envpool_xla_jax_truncation_machado ({'metric': ['charts/avg_episodic_return']})
┣━━ median hns: 1.5679929625118418
┣━━ mean hns: 8.352308370550299
This is a project we are slowly working on. There is no specific timeline or roadmap, but if you want to get involved. Feel free to reach out to me or open an issue. We are looking for volunteers to help us with the following:
- Add experiments from other libraries
- Run more experiments from currently supported libraries
- Documentation and designing standards
- Download the tensorboard metrics from the tracked experiments and load them locally to save time
If you have used this software in your work, please use the following citation.
@article{Huang_Open_RL_Benchmark_2024,
title = {{Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning}},
author = {Huang, Shengyi and Gallouédec, Quentin and Felten, Florian and Raffin, Antonin and Dossa, Rousslan Fernand Julien and Zhao, Yanxiao and Sullivan, Ryan and Makoviychuk, Viktor and Makoviichuk, Denys and Danesh, Mohamad H. and Roumégous, Cyril and Weng, Jiayi and Chen, Chufan and Rahman, Md Masudur and M. Araújo, João G. and Quan, Guorui and Tan, Daniel and Klein, Timo and Charakorn, Rujikorn and Towers, Mark and Berthelot, Yann and Mehta, Kinal and Chakraborty, Dipam and KG, Arjun and Charraut, Valentin and Ye, Chang and Liu, Zichen and Alegre, Lucas N. and Nikulin, Alexander and Hu, Xiao and Liu, Tianlin and Choi, Jongwook and Yi, Brent},
journal = {arXiv preprint arXiv:2402.03046},
year = {2024},
url = {https://arxiv.org/abs/2402.03046}
}