Skip to content

openrlbenchmark/openrlbenchmark

Repository files navigation

Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning

Code style: black Imports: isort Open In Colab

Open RL Benchmark is a comprehensive collection of tracked experiments for RL. It aims to make it easier for RL practitioners to pull and compare all kinds of metrics from reputable RL libraries like Stable-baselines3, Tianshou, CleanRL, and others.

Installation

You can install it via pip or the dev setup.

Pip install

pip install openrlbenchmark --upgrade

Dev Setup

Prerequisites:

git clone https://github.com/openrlbenchmark/openrlbenchmark.git
cd openrlbenchmark
poetry install

Get started

Open RL Benchmark provides an RLops CLI to pull and compare metrics from Weights and Biases. The following example shows how to compare the performance of SB3's ppo, a2c, ddpg, ppo_lstm, sac, td3, ppo, trpo, CleanRL's sac on HalfCheetahBulletEnv-v0.

python -m openrlbenchmark.rlops \
    --filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' \
        'ppo_continuous_action?tag=v1.0.0-27-gde3f410&seed=1&seed=2&seed=3&cl=CleanRL PPO' \
    --filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' \
        'baselines-ppo2-mlp?cl=openai/baselines PPO2' \
    --env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
    --env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
    --no-check-empty-runs \
    --pc.ncols 3 \
    --pc.ncols-legend 3 \
    --rliable \
    --rc.score_normalization_method maxmin \
    --rc.normalized_score_threshold 1.0 \
    --rc.sample_efficiency_plots \
    --rc.sample_efficiency_and_walltime_efficiency_method Median \
    --rc.performance_profile_plots  \
    --rc.aggregate_metrics_plots  \
    --rc.sample_efficiency_num_bootstrap_reps 10 \
    --rc.performance_profile_num_bootstrap_reps 10 \
    --rc.interval_estimates_num_bootstrap_reps 10 \
    --output-filename static/0compare \
    --scan-history

Here, we created multiple filters. The first string in the first filter is '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return', which is a query string that specifies the following:

  • we: the W&B entity name
  • wpn: the W&B project name
  • ceik: the custom key for the environment id
  • cen: the custom key for the experiment name
  • metric: the metric we are interested in

The second string in the first filter is 'ppo_continuous_action?tag=v1.0.0-27-gde3f410&seed=1&seed=2&seed=3&cl=CleanRL PPO', which is a query string that specifies the following:

  • exp_name: the experiment name we are interested in, such as ppo_continuous_action in this case
  • tag: the tag we are interested in
  • params: the parameters or configurations of interest, such as seed
    • Due to W&B's handling of nested configuration data, the exact key for a parameter might vary. In most cases, parameters can be index directly by their key or key.value. Hence, seed or seed.value could be the correct key when trying to index this parameter in https://wandb.ai/openrlbenchmark/cleanrl/runs/1bvy71i6/overview. Nonetheless, for nested configurations, the correct reference must navigate through the structure, such as trl_ppo_trainer_config.value.lam to index the lam parameter. To see the complete config in its entirety, click on the "View Raw Data" button available on the config section of a W&B experiment overview page, like what is available at https://wandb.ai/costa-huang/cleanRL/runs/3nhnaboz/overview.
    • The custom keys for referencing specific configurations, such as the environment id (ceik) and the experiment name (cen), follow the same indexing convention as the parameters.

So we are fetching metrics from https://wandb.ai/openrlbenchmark/cleanrl. The environment id is stored in the env_id key, and the experiment name is stored in the exp_name key. The metric we are interested in is charts/episodic_return.

Similarly, we are fetching metrics from https://wandb.ai/openrlbenchmark/baselines. The environment id is stored in the env key, and the experiment name is stored in the exp_name key. The metric we are interested in is charts/episodic_return. You can also customize the legend with the cl query string, such as baselines-ppo2-mlp?cl=openai/baselines PPO2.

The labels of the figure can be customized with the --pc.xlabel and --pc.ylabel flags. You can also specify the maximum number of timesteps to plot with --pc.max_steps. The --pc.ncols flag specifies the number of columns in the figure. The --pc.ncols-legend flag specifies the number of columns in the legend. The --output-filename flag specifies the filename of the output figure

The --rliable toggles our rliable integration, and its configuration can be tweeked via --rc. The command above generates the following plot:

The --report tag also generates a wandb report

The command also generates a compare.png, a compare.md, and a compare.csv in the current directory.

Learning curves: the compare.png shows the learning curves which subsamples 10000 data points and and interpolate. The curves are smoothed by a rolling average with a window size 100 and their shaded region represents the standard deviation.

Result table: the compare.md and compare.csv shows the average episodic return of the last 100 episodes. For each random seed $i$ (we have 3 random seeds for each set of experiments), we calculate the average episodic return of the last 100 training episodes as $a_i$. We then average the $a_i$'s over all random seeds to get the final average episodic return and report its standard deviation. This type of evaluation is known as an implicit evaluation method (Machado et al., 2017) which aligns better with the general goal of RL which is continual learning. This method also detects issues with catastrophic forgetting compared to the evaluation method that evaluates the best model.

Warning We recommend you to use --scan-history which pullts all of the data points, but initially it will cache the data and may take a while to run. If you don't use --scan-history, it will only pull 500 data points from wandb randomly, which could generate different learning curves each time you run the command.

Offline mode

We introduced an experimental offline mode. Sometimes even with caching --scan-history the script can still take a long time if there are too many environments or experiments. This is because we are still calling many wandb.Api().runs(..., filters) under the hood.

No worries though. When running with --scan-history, we also automatically build a local sqlite database to store the metadata of runs. Then, you can run python -m openrlbenchmark.rlops ... --scan-history --offline to generate the plots without having access to the internet. It should considerably speed up the plotting process as well. We are still working on improving the offline mode, so please let us know if you encounter any issues.

Currently supported libraries

  • CleanRL
    • ceik: env_id
    • cen: exp_name (e.g., sac_continuous_action, ppo_continuous_action, ppo_atari)
    • metric: charts/episodic_return
  • Stable-baselines3
    • ceik: env
    • cen: algo (e.g., sac, ppo, a2c)
    • metric: rollout/ep_rew_mean or eval/mean_reward
  • ikostrikov/jaxrl
    • ceik: env_name
    • cen: algo (e.g., sac)
    • metric: training/return or evaluation/average_returns
  • baselines
    • ceik: env
    • cen: alg (e.g., ppo2)
    • metric: charts/episodic_return or eprewmean
  • sbx
    • ceik: env
    • cen: alg (e.g., sac, tqc)
    • metric: rollout/ep_rew_mean or eval/mean_reward
  • Tianshou
    • ceik: task
    • cen: algo_name (e.g., ppo, iqn)
    • metric: test/reward
  • MORL-Baselines
    • ceik: env_id
    • cen: algo (e.g., PGMORL, PCN)
    • metric: eval/hypervolume, eval/igd, eval/sparsity, eval/eum, eval/mul

The following libraries have some recorded experiments:

  • openai/phasic-policy-gradient (has some metrics)
    • ceik: env_name
    • cen: arch (shared)
    • metric: charts/episodic_return
  • sfujim/TD3 (has some metrics)
    • ceik: env
    • cen: policy (e.g., TD3)
    • metric: charts/episodic_return

More examples

Compare CleanRL's PPO with openai/baselines's PPO2 on Atari games:

Sometimes the same environments could have different names in different libraries. For example, openai/baselines uses BreakoutNoFrameskip-v4 while EnvPool uses Breakout-v5. To compare the two libraries, we need to specify the env_id for CleanRL and env for openai/baselines. In this case, can specify the corresponding env_ids for each filter.

For Atari games, we can toggle --rc.score_normalization_method atari option to use human-normalized scores for rliable analysis.

python -m openrlbenchmark.rlops \
    --filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-cnn' \
    --filters '?we=openrlbenchmark&wpn=envpool-atari&ceik=env_id&cen=exp_name&metric=charts/avg_episodic_return' 'ppo_atari_envpool_xla_jax_truncation' \
    --env-ids AlienNoFrameskip-v4 AmidarNoFrameskip-v4 AssaultNoFrameskip-v4 AsterixNoFrameskip-v4 AsteroidsNoFrameskip-v4 AtlantisNoFrameskip-v4 BankHeistNoFrameskip-v4 BattleZoneNoFrameskip-v4 BeamRiderNoFrameskip-v4 BerzerkNoFrameskip-v4 BowlingNoFrameskip-v4 BoxingNoFrameskip-v4 BreakoutNoFrameskip-v4 CentipedeNoFrameskip-v4 ChopperCommandNoFrameskip-v4 CrazyClimberNoFrameskip-v4 DefenderNoFrameskip-v4 DemonAttackNoFrameskip-v4 DoubleDunkNoFrameskip-v4 EnduroNoFrameskip-v4 FishingDerbyNoFrameskip-v4 FreewayNoFrameskip-v4 FrostbiteNoFrameskip-v4 GopherNoFrameskip-v4 GravitarNoFrameskip-v4 HeroNoFrameskip-v4 IceHockeyNoFrameskip-v4 PrivateEyeNoFrameskip-v4 QbertNoFrameskip-v4 RiverraidNoFrameskip-v4 RoadRunnerNoFrameskip-v4 RobotankNoFrameskip-v4 SeaquestNoFrameskip-v4 SkiingNoFrameskip-v4 SolarisNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 StarGunnerNoFrameskip-v4 SurroundNoFrameskip-v4 TennisNoFrameskip-v4 TimePilotNoFrameskip-v4 TutankhamNoFrameskip-v4 UpNDownNoFrameskip-v4 VentureNoFrameskip-v4 VideoPinballNoFrameskip-v4 WizardOfWorNoFrameskip-v4 YarsRevengeNoFrameskip-v4 ZaxxonNoFrameskip-v4 JamesbondNoFrameskip-v4 KangarooNoFrameskip-v4 KrullNoFrameskip-v4 KungFuMasterNoFrameskip-v4 MontezumaRevengeNoFrameskip-v4 MsPacmanNoFrameskip-v4 NameThisGameNoFrameskip-v4 PhoenixNoFrameskip-v4 PitfallNoFrameskip-v4 PongNoFrameskip-v4 \
    --env-ids Alien-v5 Amidar-v5 Assault-v5 Asterix-v5 Asteroids-v5 Atlantis-v5 BankHeist-v5 BattleZone-v5 BeamRider-v5 Berzerk-v5 Bowling-v5 Boxing-v5 Breakout-v5 Centipede-v5 ChopperCommand-v5 CrazyClimber-v5 Defender-v5 DemonAttack-v5 DoubleDunk-v5 Enduro-v5 FishingDerby-v5 Freeway-v5 Frostbite-v5 Gopher-v5 Gravitar-v5 Hero-v5 IceHockey-v5 PrivateEye-v5 Qbert-v5 Riverraid-v5 RoadRunner-v5 Robotank-v5 Seaquest-v5 Skiing-v5 Solaris-v5 SpaceInvaders-v5 StarGunner-v5 Surround-v5 Tennis-v5 TimePilot-v5 Tutankham-v5 UpNDown-v5 Venture-v5 VideoPinball-v5 WizardOfWor-v5 YarsRevenge-v5 Zaxxon-v5 Jamesbond-v5 Kangaroo-v5 Krull-v5 KungFuMaster-v5 MontezumaRevenge-v5 MsPacman-v5 NameThisGame-v5 Phoenix-v5 Pitfall-v5 Pong-v5 \
    --no-check-empty-runs \
    --pc.ncols 5 \
    --pc.ncols-legend 2 \
    --rliable \
    --rc.score_normalization_method atari \
    --rc.normalized_score_threshold 8.0 \
    --rc.sample_efficiency_plots \
    --rc.sample_efficiency_and_walltime_efficiency_method Median \
    --rc.performance_profile_plots  \
    --rc.aggregate_metrics_plots  \
    --rc.sample_efficiency_num_bootstrap_reps 50000 \
    --rc.performance_profile_num_bootstrap_reps 2000 \
    --rc.interval_estimates_num_bootstrap_reps 2000 \
    --output-filename static/cleanrl_vs_baselines_atari \
    --scan-history

Furthermore, the --rliable integration generates cleanrl_vs_baselines_iqm_profile.png, the Interquartile Mean (IQM) and performance profile (Agarwal et al., 2022), and cleanrl_vs_baselines_hns_aggregate.png, the aggregate human-normalized scores with Stratified Bootstrap Confidence Intervals (see @araffin's excellent blog post explainer).

Compare CleanRL's PPO with openai/baselines's PPO2 and jaxrl's SAC on Mujoco:

python -m openrlbenchmark.rlops \
    --filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-mlp' \
    --filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'ppo_continuous_action?tag=v1.0.0-27-gde3f410' \
    --filters '?we=openrlbenchmark&wpn=jaxrl&ceik=env_name&cen=algo&metric=training/return' 'sac' \
    --env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 InvertedPendulum-v2 Humanoid-v2 Pusher-v2 \
    --no-check-empty-runs \
    --pc.ncols 3 \
    --pc.ncols-legend 3 \
    --output-filename static/baselines_vs_cleanrl_vs_jaxrl \
    --scan-history

Multi-metrics

Experimental! API may change.

Sometimes you want to compare multiple metrics at once.

python -m openrlbenchmark.rlops_multi_metrics \
    --filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metrics=charts/episodic_return&metrics=charts/episodic_length&metrics=charts/SPS&metrics=losses/actor_loss&metrics=losses/qf1_values&metrics=losses/qf1_loss' \
        'ddpg_continuous_action?tag=pr-371' \
        'ddpg_continuous_action?tag=pr-299' \
        'ddpg_continuous_action?tag=rlops-pilot' \
        'ddpg_continuous_action_jax?tag=pr-371-jax' \
        'ddpg_continuous_action_jax?tag=pr-298' \
    --env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
    --no-check-empty-runs \
    --pc.ncols 3 \
    --pc.ncols-legend 2 \
    --output-filename static/multi-metrics \
    --scan-history --offline

Compare Tianshou's algorithms with openai/baselines's PPO2 on Atari:

python -m openrlbenchmark.rlops \
    --filters '?we=tianshou&wpn=atari.benchmark&ceik=task&cen=algo_name&metric=test/reward' 'iqn' 'ppo' 'rainbow' 'fqf' 'c51' 'dqn' 'qrdqn' \
    --filters '?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' 'baselines-ppo2-cnn' \
    --env-ids BreakoutNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 SeaquestNoFrameskip-v4 MsPacmanNoFrameskip-v4 EnduroNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4 \
    --no-check-empty-runs \
    --pc.ncols 4 \
    --pc.ncols-legend 4 \
    --output-filename static/baselines_vs_tianshou --scan-history

Compare CleanRL's PPG and PPO with openai/phasic-policy-gradient's PPG on procgen:

python -m openrlbenchmark.rlops \
    --filters '?we=openrlbenchmark&wpn=phasic-policy-gradient&ceik=env_name&cen=arch&metric=charts/episodic_return' 'shared' \
    --filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'ppo_procgen?tag=v1.0.0b1-4-g4ea73d9' 'ppg_procgen?tag=v1.0.0b1-4-g4ea73d9' \
    --env-ids starpilot bossfight bigfish \
    --no-check-empty-runs \
    --pc.ncols 3 \
    --pc.ncols-legend 3 \
    --output-filename static/ppg_vs_cleanrl \
    --scan-history

Compare CleanRL's TD3 with sfujim/TD3's TD3 on Mujoco:

python -m openrlbenchmark.rlops \
    --filters '?we=openrlbenchmark&wpn=sfujim-TD3&ceik=env&cen=policy&metric=charts/episodic_return' 'TD3' \
    --filters '?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' 'td3_continuous_action_jax?tag=pr-285' 'ddpg_continuous_action_jax?tag=pr-298' \
    --env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 \
    --no-check-empty-runs \
    --pc.ncols 3 \
    --pc.ncols-legend 3 \
    --output-filename static/td3_vs_cleanrl \
    --scan-history

Compare MORL Baselines algorithms

Notice the number of timesteps is adjusted using --pc.max_steps 400000.

python -m openrlbenchmark.rlops_multi_metrics \
  --filters '?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum' \
  'PGMORL?cl=PGMORL' \
  'CAPQL?cl=CAPQL' \
  'GPI-LS Continuous Action?cl=GPI-LS' \
  'GPI-PD Continuous Action?cl=GPI-PD' \
  --env-ids mo-halfcheetah-v4 mo-hopper-2d-v4  \
  --pc.ncols 2 \
  --pc.ncols-legend 4 \
  --pc.xlabel 'Training steps' \
  --pc.ylabel '' \
  --pc.max_steps 400000 \
  --output-filename morl/morl_continuous \
  --scan-history

Calculate human normalized scores

python -m openrlbenchmark.hns --files static/cleanrl_vs_baselines.csv static/machado_10M.csv static/machado_50M.csv 
baselines-ppo2-cnn ({})
┣━━ median hns: 0.7959851540635047
┣━━ mean hns: 4.54588939893709
ppo_atari_envpool_xla_jax_truncation ({})
┣━━ median hns: 0.9783505154639175
┣━━ mean hns: 6.841083973256849
ppo_atari_envpool_xla_jax_truncation_machado_10M ({})
┣━━ median hns: 0.7347972972972973
┣━━ mean hns: 2.919095857954249
ppo_atari_envpool_xla_jax_truncation ({'metric': ['charts/avg_episodic_return']})
┣━━ median hns: 0.9783505154639175
┣━━ mean hns: 6.841083973256849
ppo_atari_envpool_xla_jax_truncation_machado ({'metric': ['charts/avg_episodic_return']})
┣━━ median hns: 1.5679929625118418
┣━━ mean hns: 8.352308370550299

What's going on right now?

This is a project we are slowly working on. There is no specific timeline or roadmap, but if you want to get involved. Feel free to reach out to me or open an issue. We are looking for volunteers to help us with the following:

  • Add experiments from other libraries
  • Run more experiments from currently supported libraries
  • Documentation and designing standards
  • Download the tensorboard metrics from the tracked experiments and load them locally to save time

Citation

If you have used this software in your work, please use the following citation.

@article{Huang_Open_RL_Benchmark_2024,
    title = {{Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning}},
    author = {Huang, Shengyi and Gallouédec, Quentin and Felten, Florian and Raffin, Antonin and Dossa, Rousslan Fernand Julien and Zhao, Yanxiao and Sullivan, Ryan and Makoviychuk, Viktor and Makoviichuk, Denys and Danesh, Mohamad H. and Roumégous, Cyril and Weng, Jiayi and Chen, Chufan and Rahman, Md Masudur and M. Araújo, João G. and Quan, Guorui and Tan, Daniel and Klein, Timo and Charakorn, Rujikorn and Towers, Mark and Berthelot, Yann and Mehta, Kinal and Chakraborty, Dipam and KG, Arjun and Charraut, Valentin and Ye, Chang and Liu, Zichen and Alegre, Lucas N. and Nikulin, Alexander and Hu, Xiao and Liu, Tianlin and Choi, Jongwook and Yi, Brent},
    journal = {arXiv preprint arXiv:2402.03046},
    year = {2024},
    url = {https://arxiv.org/abs/2402.03046}
}