Open
Description
We keep this issue open to collect feature requests from users and hear your voice. Our monthly release plan is also available here.
You can either:
- Suggest a new feature by leaving a comment.
- Vote for a feature request with +1 or be against with -1. (Remember that developers are busy and cannot respond to all feature requests, so vote for your most favorable one!)
- Tell us that you would like to help implement one of the features in the list or review the PRs. (This is the greatest things to hear about!)
V0.5.0(2023.1)
- code
- Support YOLOv8 instance seg (YOLOv8 支持实例分割)
- Added a script to verify whether the installation was successful (新增快速验证是否安装成功的脚本) [Feature] Add a script to verify whether the installation was successful #487
V0.2.0(2022.11)
- code
- Support
YOLOv6
MLX model(支持YOLOV6
MLX 模型) [Feature] Support YOLOv6 ML model #265 - Align
PPYOLOE
training mAP(对齐PPYOLOE
训练精度) [Feature] Support PPYOLOE training #259 - Align
YOLOv7
training mAP(对齐YOLOv7
训练精度) [Feature] Support YOLOv7 P5 training #243 [Feature] Support YOLOv7 P6 training #310 - Support Grad-free CAM and Grad-based CAM(支持 Grad-based CAM 和 Grad-free CAM) [Feature] Support grad-based cam and grad-free cam #234
- Integrate
sahi
repo (集成sahi
) sahi support in v0.2.0 #230 [Feature] Add large image demo withsahi
#284 - Added a script to verify whether the installation was successful (新增快速验证是否安装成功的脚本) [WIP] [Feature] Add installation check script #277
-
demo/featmap_vis_demo.py
script supports input image folder and url referencedemo/demo_image.py
(参考demo/demo_image.py
脚本 为demo/featmap_vis_demo.py
支持文件夹和 url 输入) [Feature]featmap_vis_demo
supports input image folder and url reference #248 - Support the use of existing models to export label files in labelme format (支持使用已有模型导出 labelme 格式的标签文件) [Feature] Add flag for output labelme label file in
image_demo
#288 - Refer to browse_dataset of mmcls to implement similar functionality in MMYOLO (参考 mmcls 的 browse_dataset 在 MMYOLO 中实现类似功能) [Improvement]
browse_dataset.py
#304 - Support
image_demo.py
influence result formate to labelme label files(支持image_demo.py
结果导出 labelme 格式的标签文件) [Feature] Add flag for output labelme label file inimage_demo
#288 - Support labelme label to COCO (支持 labelme 标签转 COCO) [Feature] Add
labelme2coco
script #308 - Support big COCO annotation file split into
train + val + test
ortrainval + test
annotation files (支持划分大的 COCO 标签文件为train + val + test
或trainval + test
标签文件) [Feature] Add split COCO dataset script #311 - Added analysis script to automatically print registered modules in OpenMMLab (新增分析脚本自动打印 OpenMMLab 中已经注册的模块)
- Compare the difference in inference speed between official YOLOv5 and YOLOv5 in MMYOLO under trt fp32 (对比官方 YOLOv5 和 MMYOLO 中 YOLOv5 在 trt fp32 下的推理速度差异)
- Added accelerated video inference script (新增加速后的视频推理脚本)
- Support ignore instance in YOLOv5(YOLOv5 支持 ignore instance 功能)
- dataset or pipeline supports loading all datasets at once (dataset 或者 pipeline 支持一次性加载全部数据集)-实验性做法
- Support
- doc
- Added overview documentation of Algorithm principles and implementation with YOLOv6 (新增 YOLOv6 原理和实现详解文档概览) [DOC] Add YOLOv6 description doc - overview #252
- Added YOLOv5 P6 1280 large resolution model structure diagram and brief description (新增 YOLOv5 P6 1280 大分辨率模型结构图和简要描述) [Docs] Add graph of P6 model #273
- Customized dataset training+deployment full process document (自定义数据集 训练+部署 全流程文档) [DOC] Add custom dataset guide #306
- Add module description documentation and provide a list of all available plug-in modules (新增一个模块描述文档并提供所有可用插件模块列表) [Feature] Add attention module of CBAM #246
- Added
YOLOv5+ ResNet50
Self-supervised training withmmselfsup
for weighted in How-to documents (How-to 新增 YOLOv5+ ResNet50 使用 mmselfsup 自监督训练的权重文档) [Docs] Add two examples of backbone replacement and updateplugin.md
in EN #291 - Optimize and improve deployment-related documentation (优化和完善部署相关文档)
- Added documentation of how to use
mim
to call mmdet or other mm series repo script (新增如何通过 mim 跨库调用其他 OpenMMLab 脚本的文档) [Docs] Add docs about how to use mim to run scripts across libraries #321
Collected features
- YOLO series supports input Any channel (YOLO 系列代码支持输入任意通道)
- Adaptive batchsize function(支持自动 bs 计算功能) 自适应batchsize的功能 (Adaptive batchsize function) #141
- Adaptive to anchor calculation(支持训练前自动anchor 聚类优化) autoanchor in mmyolo #163
中文视频资源
汇总地址: https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/article.md
工具类
序号 | 内容 | 视频 | 课程中的代码/文档 | |
---|---|---|---|---|
✅ | 第1讲 | 特征图可视化 | 特征图可视化文档 特征图可视化.ipynb |
|
✅ | 第2讲 | 基于 sahi 的大图推理 | 10分钟轻松掌握大图推理.ipynb |
基础类
序号 | 内容 | 视频 | 课程中的代码/文档 | |
---|---|---|---|---|
✅ | 第1讲 | 配置全解读 | 配置全解读文档 | |
✅ | 第2讲 | 工程文件结构简析 | 工程文件结构简析文档 | |
🟩 | 第x讲 | 模型是如何构建的 - cfg 模式和 Registry 机制详解 | ||
🟩 | 第x讲 | MMEngine 必备知识点梳理 |
实用类
序号 | 内容 | 视频 | 课程中的代码/文档 | |
---|---|---|---|---|
✅ | 第1讲 | 源码阅读和调试「必备」技巧 | 源码阅读和调试「必备」技巧文档 | |
✅ | 第2讲 | 10分钟换遍主干网络 | 10分钟换遍主干网络文档 10分钟换遍主干网络.ipynb |
|
✅ | 第3讲 | 自定义数据集从标注到部署保姆级教程 | 自定义数据集从标注到部署保姆级教程 | |
✅ | 第4讲 | 顶会第一步 · 模块自定义 | 顶会第一步·模块自定义.ipynb | |
🟩 | 第x讲 | 关于 MMDet/MMYOLO 中可视化的一切 | ||
🟩 | 第x讲 | 关于组件随意组合那件事 | ||
🟩 | 第x讲 | OpenMMLab 跨库调用全知道 | ||
🟩 | 第x讲 | YOLOv5 自定义插件 |
源码解读类
序号 | 内容 | 视频 | 课程中的代码/文档 | |
---|---|---|---|---|
🟩 | 第x讲 | RTMDet 原理和实现全解析 | ||
🟩 | 第x讲 | YOLOv5 原理和实现全解析 | ||
🟩 | 第x讲 | YOLOv6 原理和实现全解析 | ||
🟩 | 第x讲 | YOLOv7 原理和实现全解析 | ||
🟩 | 第x讲 | YOLOv8 原理和实现全解析 | ||
🟩 | 第x讲 | PPYOLOE 原理和实现全解析 |
Metadata
Assignees
Labels
No labels