Skip to content

Commit

Permalink
FAQGen Megaservice (#425)
Browse files Browse the repository at this point in the history
* Added FAQGEN v1

Signed-off-by: Yogesh Pandey <yogesh.pandey@intel.com>

---------

Signed-off-by: Yogesh Pandey <yogesh.pandey@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
yogeshmpandey and pre-commit-ci[bot] authored Jul 24, 2024
1 parent 21b7d11 commit 8c4a253
Show file tree
Hide file tree
Showing 96 changed files with 4,157 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .github/workflows/scripts/build_push.sh
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ function docker_build() {
# $1 is like "apple orange pear"
for MEGA_SVC in $1; do
case $MEGA_SVC in
"ChatQnA"|"CodeGen"|"CodeTrans"|"DocSum"|"Translation"|"AudioQnA"|"SearchQnA")
"ChatQnA"|"CodeGen"|"CodeTrans"|"DocSum"|"Translation"|"AudioQnA"|"SearchQnA"|"FaqGen")
cd $MEGA_SVC/docker
IMAGE_NAME="$(getImagenameFromMega $MEGA_SVC)"
docker_build ${IMAGE_NAME}
Expand Down
17 changes: 17 additions & 0 deletions FaqGen/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# FAQ Generation Application

In today's data-driven world, organizations across various industries face the challenge of managing and understanding vast amounts of information. Legal documents, contracts, regulations, and customer inquiries often contain critical insights buried within dense text. Extracting and presenting these insights in a concise and accessible format is crucial for decision-making, compliance, and customer satisfaction.

Our FAQ Generation Application leverages the power of large language models (LLMs) to revolutionize the way you interact with and comprehend complex textual data. By harnessing cutting-edge natural language processing techniques, our application can automatically generate comprehensive and natural-sounding frequently asked questions (FAQs) from your documents, legal texts, customer queries, and other sources. In this example use case, we utilize LangChain to implement FAQ Generation and facilitate LLM inference using Text Generation Inference on Intel Xeon and Gaudi2 processors.

# Deploy FAQ Generation Service

The FAQ Generation service can be effortlessly deployed on either Intel Gaudi2 or Intel XEON Scalable Processors.

## Deploy FAQ Generation on Gaudi

Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deploying FAQ Generation on Gaudi.

## Deploy FAQ Generation on Xeon

Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying FAQ Generation on Xeon.
Binary file added FaqGen/assets/img/faqgen_react_ui_text.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FaqGen/assets/img/faqgen_react_ui_text_file.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FaqGen/assets/img/faqgen_ui_text.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
32 changes: 32 additions & 0 deletions FaqGen/docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@


# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM langchain/langchain:latest


RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
vim

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

RUN cd /home/user/ && \
git clone https://github.com/opea-project/GenAIComps.git

RUN cd /home/user/GenAIComps && pip install --no-cache-dir --upgrade pip && \
pip install -r /home/user/GenAIComps/requirements.txt

COPY ./faqgen.py /home/user/faqgen.py

ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps

USER user

WORKDIR /home/user

ENTRYPOINT ["python", "faqgen.py"]
36 changes: 36 additions & 0 deletions FaqGen/docker/faqgen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import asyncio
import os

from comps import FaqGenGateway, MicroService, ServiceOrchestrator, ServiceType

MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))


class FaqGenService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()

def add_remote_service(self):
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/faqgen",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
self.gateway = FaqGenGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)


if __name__ == "__main__":
faqgen = FaqGenService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
faqgen.add_remote_service()
171 changes: 171 additions & 0 deletions FaqGen/docker/gaudi/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
# Build MegaService of FAQ Generation on Gaudi

This document outlines the deployment process for a FAQ Generation application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as llm. We will publish the Docker images to Docker Hub, which will simplify the deployment process for this service.

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally. This step can be ignored once the Docker images are published to Docker hub.

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```

### 1. Pull TGI Gaudi Image

As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:

```bash
docker pull ghcr.io/huggingface/tgi-gaudi:1.2.1
```

### 2. Build LLM Image

```bash
docker build -t opea/llm-faqgen-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/tgi/Dockerfile .
```

### 3. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `faqgen.py` Python script. Build the MegaService Docker image using the command below:

```bash
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/FaqGen/docker/
docker build --no-cache -t opea/faqgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```

### 4. Build UI Docker Image

Construct the frontend Docker image using the command below:

```bash
cd GenAIExamples/FaqGen/docker/ui/
docker build -t opea/faqgen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
```

### 5. Build react UI Docker Image (Optional)

Build the frontend Docker image based on react framework via below command:

```bash
cd GenAIExamples/FaqGen/docker/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/faqgen"
docker build -t opea/faqgen-react-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
```

Then run the command `docker images`, you will have the following Docker Images:

1. `ghcr.io/huggingface/tgi-gaudi:1.2.1`
2. `opea/llm-faqgen-tgi:latest`
3. `opea/faqgen:latest`
4. `opea/faqgen-ui:latest`
5. `opea/faqgen-react-ui:latest`

## 🚀 Start Microservices and MegaService

### Setup Environment Variables

Since the `docker_compose.yaml` will consume some environment variables, you need to setup them in advance as below.

```bash
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/faqgen"
```

Note: Please replace with `host_ip` with your external IP address, do not use localhost.

### Start Microservice Docker Containers

```bash
cd GenAIExamples/FaqGen/docker/gaudi
docker compose -f docker_compose.yaml up -d
```

### Validate Microservices

1. TGI Service

```bash
curl http://${your_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json'
```

2. LLM Microservice

```bash
curl http://${host_ip}:9000/v1/faqgen \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'
```

3. MegaService

```bash
curl http://${host_ip}:8888/v1/faqgen -H "Content-Type: application/json" -d '{
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
}'
```

## Enable LangSmith to Monitor an Application (Optional)

LangSmith offers a suite of tools to debug, evaluate, and monitor language models and intelligent agents. It can be used to assess benchmark data for each microservice. Before launching your services with `docker compose -f docker_compose.yaml up -d`, you need to enable LangSmith tracing by setting the `LANGCHAIN_TRACING_V2` environment variable to true and configuring your LangChain API key.

Here's how you can do it:

1. Install the latest version of LangSmith:

```bash
pip install -U langsmith
```

2. Set the necessary environment variables:

```bash
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=ls_...
```

## 🚀 Launch the UI

Open this URL `http://{host_ip}:5173` in your browser to access the frontend.

![project-screenshot](../../assets/img/faqgen_ui_text.png)

## 🚀 Launch the React UI (Optional)

To access the FAQGen (react based) frontend, modify the UI service in the `docker_compose.yaml` file. Replace `faqgen-xeon-ui-server` service with the `faqgen-xeon-react-ui-server` service as per the config below:

```bash
faqgen-xeon-react-ui-server:
image: opea/faqgen-react-ui:latest
container_name: faqgen-xeon-react-ui-server
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
ports:
- 5174:80
depends_on:
- faqgen-xeon-backend-server
ipc: host
restart: always
```

Open this URL `http://{host_ip}:5174` in your browser to access the react based frontend.

- Create FAQs from Text input
![project-screenshot](../../assets/img/faqgen_react_ui_text.png)

- Create FAQs from Text Files
![project-screenshot](../../assets/img/faqgen_react_ui_text_files.png)
77 changes: 77 additions & 0 deletions FaqGen/docker/gaudi/docker_compose.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

version: "3.8"

services:
tgi_service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
container_name: tgi-gaudi-server
ports:
- "8008:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
llm_faqgen:
image: opea/llm-faqgen-tgi:latest
container_name: llm-faqgen-server
depends_on:
- tgi_service
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
LANGCHAIN_PROJECT: "opea-llm-service"
restart: unless-stopped
faqgen-gaudi-backend-server:
image: opea/faqgen:latest
container_name: faqgen-gaudi-backend-server
depends_on:
- tgi_service
- llm_faqgen
ports:
- "8888:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
ipc: host
restart: always
faqgen-gaudi-ui-server:
image: opea/faqgen-ui:latest
container_name: faqgen-gaudi-ui-server
depends_on:
- faqgen-gaudi-backend-server
ports:
- "5173:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always

networks:
default:
driver: bridge
26 changes: 26 additions & 0 deletions FaqGen/docker/ui/docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

# Use node 20.11.1 as the base image
FROM node:20.11.1

# Update package manager and install Git
RUN apt-get update -y && apt-get install -y git

# Copy the front-end code repository
COPY svelte /home/user/svelte

# Set the working directory
WORKDIR /home/user/svelte

# Install front-end dependencies
RUN npm install

# Build the front-end application
RUN npm run build

# Expose the port of the front-end application
EXPOSE 5173

# Run the front-end application in preview mode
CMD ["npm", "run", "preview", "--", "--port", "5173", "--host", "0.0.0.0"]
20 changes: 20 additions & 0 deletions FaqGen/docker/ui/docker/Dockerfile.react
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
FROM node as vite-app

COPY . /usr/app
WORKDIR /usr/app/react

ARG BACKEND_SERVICE_ENDPOINT
ENV VITE_FAQ_GEN_URL=$BACKEND_SERVICE_ENDPOINT

RUN ["npm", "install"]
RUN ["npm", "run", "build"]


FROM nginx:alpine
EXPOSE 80


COPY --from=vite-app /usr/app/react/nginx.conf /etc/nginx/conf.d/default.conf
COPY --from=vite-app /usr/app/react/dist /usr/share/nginx/html

ENTRYPOINT ["nginx", "-g", "daemon off;"]
Loading

0 comments on commit 8c4a253

Please sign in to comment.