-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathonnx.proto3
885 lines (757 loc) · 36.4 KB
/
onnx.proto3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
//
// WARNING: This file is automatically generated! Please edit onnx.in.proto.
//
// SPDX-License-Identifier: Apache-2.0
syntax = "proto3";
package onnx;
// Overview
//
// ONNX is an open specification that is comprised of the following components:
//
// 1) A definition of an extensible computation graph model.
// 2) Definitions of standard data types.
// 3) Definitions of built-in operators.
//
// This document describes the syntax of models and their computation graphs,
// as well as the standard data types. Together, they are referred to as the ONNX
// Intermediate Representation, or 'IR' for short.
//
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
// Notes
//
// Protobuf compatibility
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
// that is compatible with both protobuf v2 and v3. This means that we do not use any
// protobuf features that are only available in one of the two versions.
//
// Here are the most notable contortions we have to carry out to work around
// these limitations:
//
// - No 'map' (added protobuf 3.0). We instead represent mappings as lists
// of key-value pairs, where order does not matter and duplicates
// are not allowed.
// Versioning
//
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
//
// To be compatible with both proto2 and proto3, we will use a version number
// that is not defined by the default value but an explicit enum number.
enum Version {
// proto3 requires the first enum value to be zero.
// We add this just to appease the compiler.
_START_VERSION = 0;
// The version field is always serialized and we will use it to store the
// version that the graph is generated from. This helps us set up version
// control.
// For the IR, we are using simple numbers starting with 0x00000001,
// which was the version we published on Oct 10, 2017.
IR_VERSION_2017_10_10 = 0x0000000000000001;
// IR_VERSION 2 published on Oct 30, 2017
// - Added type discriminator to AttributeProto to support proto3 users
IR_VERSION_2017_10_30 = 0x0000000000000002;
// IR VERSION 3 published on Nov 3, 2017
// - For operator versioning:
// - Added new message OperatorSetIdProto
// - Added opset_import in ModelProto
// - For vendor extensions, added domain in NodeProto
IR_VERSION_2017_11_3 = 0x0000000000000003;
// IR VERSION 4 published on Jan 22, 2019
// - Relax constraint that initializers should be a subset of graph inputs
// - Add type BFLOAT16
IR_VERSION_2019_1_22 = 0x0000000000000004;
// IR VERSION 5 published on March 18, 2019
// - Add message TensorAnnotation.
// - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
IR_VERSION_2019_3_18 = 0x0000000000000005;
// IR VERSION 6 published on Sep 19, 2019
// - Add support for sparse tensor constants stored in model.
// - Add message SparseTensorProto
// - Add sparse initializers
IR_VERSION_2019_9_19 = 0x0000000000000006;
// IR VERSION 7 published on May 8, 2020
// - Add support to allow function body graph to rely on multiple external opreator sets.
// - Add a list to promote inference graph's initializers to global and
// mutable variables. Global variables are visible in all graphs of the
// stored models.
// - Add message TrainingInfoProto to store initialization
// method and training algorithm. The execution of TrainingInfoProto
// can modify the values of mutable variables.
// - Implicitly add inference graph into each TrainingInfoProto's algorithm.
IR_VERSION_2020_5_8 = 0x0000000000000007;
// IR VERSION 8 published on July 30, 2021
// Introduce TypeProto.SparseTensor
// Introduce TypeProto.Optional
// Added a list of FunctionProtos local to the model
// Deprecated since_version and operator status from FunctionProto
IR_VERSION_2021_7_30 = 0x0000000000000008;
// IR VERSION 9 published on May 5, 2023
// Added AttributeProto to FunctionProto so that default attribute values can be set.
// Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ.
IR_VERSION_2023_5_5 = 0x0000000000000009;
// IR VERSION 10 published on March 25, 2024
// Added UINT4, INT4.
IR_VERSION_2024_3_25 = 0x000000000000000A;
// IR VERSION 11 published on TBD
// Added FLOAT4E2M1.
IR_VERSION = 0x000000000000000B;
}
// Attributes
//
// A named attribute containing either singular float, integer, string, graph,
// and tensor values, or repeated float, integer, string, graph, and tensor values.
// An AttributeProto MUST contain the name field, and *only one* of the
// following content fields, effectively enforcing a C/C++ union equivalent.
message AttributeProto {
reserved 12, 16 to 19;
reserved "v";
// Note: this enum is structurally identical to the OpSchema::AttrType
// enum defined in schema.h. If you rev one, you likely need to rev the other.
enum AttributeType {
UNDEFINED = 0;
FLOAT = 1;
INT = 2;
STRING = 3;
TENSOR = 4;
GRAPH = 5;
SPARSE_TENSOR = 11;
TYPE_PROTO = 13;
FLOATS = 6;
INTS = 7;
STRINGS = 8;
TENSORS = 9;
GRAPHS = 10;
SPARSE_TENSORS = 12;
TYPE_PROTOS = 14;
}
// The name field MUST be present for this version of the IR.
string name = 1; // namespace Attribute
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
// In this case, this AttributeProto does not contain data, and it's a reference of attribute
// in parent scope.
// NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
string ref_attr_name = 21;
// A human-readable documentation for this attribute. Markdown is allowed.
string doc_string = 13;
// The type field MUST be present for this version of the IR.
// For 0.0.1 versions of the IR, this field was not defined, and
// implementations needed to use has_field heuristics to determine
// which value field was in use. For IR_VERSION 0.0.2 or later, this
// field MUST be set and match the f|i|s|t|... field in use. This
// change was made to accommodate proto3 implementations.
AttributeType type = 20; // discriminator that indicates which field below is in use
// Exactly ONE of the following fields must be present for this version of the IR
float f = 2; // float
int64 i = 3; // int
bytes s = 4; // UTF-8 string
TensorProto t = 5; // tensor value
GraphProto g = 6; // graph
SparseTensorProto sparse_tensor = 22; // sparse tensor value
// Do not use field below, it's deprecated.
// optional ValueProto v = 12; // value - subsumes everything but graph
TypeProto tp = 14; // type proto
repeated float floats = 7; // list of floats
repeated int64 ints = 8; // list of ints
repeated bytes strings = 9; // list of UTF-8 strings
repeated TensorProto tensors = 10; // list of tensors
repeated GraphProto graphs = 11; // list of graph
repeated SparseTensorProto sparse_tensors = 23; // list of sparse tensors
repeated TypeProto type_protos = 15;// list of type protos
}
// Defines information on value, including the name, the type, and
// the shape of the value.
message ValueInfoProto {
// This field MUST be present in this version of the IR.
string name = 1; // namespace Value
// This field MUST be present in this version of the IR for
// inputs and outputs of the top-level graph.
TypeProto type = 2;
// A human-readable documentation for this value. Markdown is allowed.
string doc_string = 3;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 4;
}
// Nodes
//
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message NodeProto {
repeated string input = 1; // namespace Value
repeated string output = 2; // namespace Value
// An optional identifier for this node in a graph.
// This field MAY be absent in this version of the IR.
string name = 3; // namespace Node
// The symbolic identifier of the Operator to execute.
string op_type = 4; // namespace Operator
// The domain of the OperatorSet that specifies the operator named by op_type.
string domain = 7; // namespace Domain
// Overload identifier, used only to map this to a model-local function.
string overload = 8;
// Additional named attributes.
repeated AttributeProto attribute = 5;
// A human-readable documentation for this node. Markdown is allowed.
string doc_string = 6;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 9;
}
// Training information
// TrainingInfoProto stores information for training a model.
// In particular, this defines two functionalities: an initialization-step
// and a training-algorithm-step. Initialization resets the model
// back to its original state as if no training has been performed.
// Training algorithm improves the model based on input data.
//
// The semantics of the initialization-step is that the initializers
// in ModelProto.graph and in TrainingInfoProto.algorithm are first
// initialized as specified by the initializers in the graph, and then
// updated by the "initialization_binding" in every instance in
// ModelProto.training_info.
//
// The field "algorithm" defines a computation graph which represents a
// training algorithm's step. After the execution of a
// TrainingInfoProto.algorithm, the initializers specified by "update_binding"
// may be immediately updated. If the targeted training algorithm contains
// consecutive update steps (such as block coordinate descent methods),
// the user needs to create a TrainingInfoProto for each step.
message TrainingInfoProto {
// This field describes a graph to compute the initial tensors
// upon starting the training process. Initialization graph has no input
// and can have multiple outputs. Usually, trainable tensors in neural
// networks are randomly initialized. To achieve that, for each tensor,
// the user can put a random number operator such as RandomNormal or
// RandomUniform in TrainingInfoProto.initialization.node and assign its
// random output to the specific tensor using "initialization_binding".
// This graph can also set the initializers in "algorithm" in the same
// TrainingInfoProto; a use case is resetting the number of training
// iteration to zero.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output. Thus, no initializer would be changed by default.
GraphProto initialization = 1;
// This field represents a training algorithm step. Given required inputs,
// it computes outputs to update initializers in its own or inference graph's
// initializer lists. In general, this field contains loss node, gradient node,
// optimizer node, increment of iteration count.
//
// An execution of the training algorithm step is performed by executing the
// graph obtained by combining the inference graph (namely "ModelProto.graph")
// and the "algorithm" graph. That is, the actual
// input/initializer/output/node/value_info/sparse_initializer list of
// the training graph is the concatenation of
// "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
// and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
// in that order. This combined graph must satisfy the normal ONNX conditions.
// Now, let's provide a visualization of graph combination for clarity.
// Let the inference graph (i.e., "ModelProto.graph") be
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
// and the "algorithm" graph be
// tensor_d -> Add -> tensor_e
// The combination process results
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
//
// Notice that an input of a node in the "algorithm" graph may reference the
// output of a node in the inference graph (but not the other way round). Also, inference
// node cannot reference inputs of "algorithm". With these restrictions, inference graph
// can always be run independently without training information.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output. Evaluating the default training step never
// update any initializers.
GraphProto algorithm = 2;
// This field specifies the bindings from the outputs of "initialization" to
// some initializers in "ModelProto.graph.initializer" and
// the "algorithm.initializer" in the same TrainingInfoProto.
// See "update_binding" below for details.
//
// By default, this field is empty and no initializer would be changed
// by the execution of "initialization".
repeated StringStringEntryProto initialization_binding = 3;
// Gradient-based training is usually an iterative procedure. In one gradient
// descent iteration, we apply
//
// x = x - r * g
//
// where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
// gradient of "x" with respect to a chosen loss. To avoid adding assignments
// into the training graph, we split the update equation into
//
// y = x - r * g
// x = y
//
// The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
// tell that "y" should be assigned to "x", the field "update_binding" may
// contain a key-value pair of strings, "x" (key of StringStringEntryProto)
// and "y" (value of StringStringEntryProto).
// For a neural network with multiple trainable (mutable) tensors, there can
// be multiple key-value pairs in "update_binding".
//
// The initializers appears as keys in "update_binding" are considered
// mutable variables. This implies some behaviors
// as described below.
//
// 1. We have only unique keys in all "update_binding"s so that two
// variables may not have the same name. This ensures that one
// variable is assigned up to once.
// 2. The keys must appear in names of "ModelProto.graph.initializer" or
// "TrainingInfoProto.algorithm.initializer".
// 3. The values must be output names of "algorithm" or "ModelProto.graph.output".
// 4. Mutable variables are initialized to the value specified by the
// corresponding initializer, and then potentially updated by
// "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
//
// This field usually contains names of trainable tensors
// (in ModelProto.graph), optimizer states such as momentums in advanced
// stochastic gradient methods (in TrainingInfoProto.graph),
// and number of training iterations (in TrainingInfoProto.graph).
//
// By default, this field is empty and no initializer would be changed
// by the execution of "algorithm".
repeated StringStringEntryProto update_binding = 4;
}
// Models
//
// ModelProto is a top-level file/container format for bundling a ML model and
// associating its computation graph with metadata.
//
// The semantics of the model are described by the associated GraphProto's.
message ModelProto {
// The version of the IR this model targets. See Version enum above.
// This field MUST be present.
int64 ir_version = 1;
// The OperatorSets this model relies on.
// All ModelProtos MUST have at least one entry that
// specifies which version of the ONNX OperatorSet is
// being imported.
//
// All nodes in the ModelProto's graph will bind against the operator
// with the same-domain/same-op_type operator with the HIGHEST version
// in the referenced operator sets.
repeated OperatorSetIdProto opset_import = 8;
// The name of the framework or tool used to generate this model.
// This field SHOULD be present to indicate which implementation/tool/framework
// emitted the model.
string producer_name = 2;
// The version of the framework or tool used to generate this model.
// This field SHOULD be present to indicate which implementation/tool/framework
// emitted the model.
string producer_version = 3;
// Domain name of the model.
// We use reverse domain names as name space indicators. For example:
// `com.facebook.fair` or `com.microsoft.cognitiveservices`
//
// Together with `model_version` and GraphProto.name, this forms the unique identity of
// the graph.
string domain = 4;
// The version of the graph encoded. See Version enum below.
int64 model_version = 5;
// A human-readable documentation for this model. Markdown is allowed.
string doc_string = 6;
// The parameterized graph that is evaluated to execute the model.
GraphProto graph = 7;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 14;
// Training-specific information. Sequentially executing all stored
// `TrainingInfoProto.algorithm`s and assigning their outputs following
// the corresponding `TrainingInfoProto.update_binding`s is one training
// iteration. Similarly, to initialize the model
// (as if training hasn't happened), the user should sequentially execute
// all stored `TrainingInfoProto.initialization`s and assigns their outputs
// using `TrainingInfoProto.initialization_binding`s.
//
// If this field is empty, the training behavior of the model is undefined.
repeated TrainingInfoProto training_info = 20;
// A list of function protos local to the model.
//
// The (domain, name, overload) tuple must be unique across the function protos in this list.
// In case of any conflicts the behavior (whether the model local functions are given higher priority,
// or standard operator sets are given higher priotity or this is treated as error) is defined by
// the runtimes.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto and other model local FunctionProtos.
// Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
// or by 2 FunctionProtos then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same for every node in the function body.
//
// One FunctionProto can reference other FunctionProto in the model, however, recursive reference
// is not allowed.
repeated FunctionProto functions = 25;
};
// StringStringEntryProto follows the pattern for cross-proto-version maps.
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
message StringStringEntryProto {
string key = 1;
string value = 2;
};
message TensorAnnotation {
string tensor_name = 1;
// <key, value> pairs to annotate tensor specified by <tensor_name> above.
// The keys used in the mapping below must be pre-defined in ONNX spec.
// For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
// quantization parameter keys.
repeated StringStringEntryProto quant_parameter_tensor_names = 2;
}
// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
message GraphProto {
// The nodes in the graph, sorted topologically.
repeated NodeProto node = 1;
// The name of the graph.
string name = 2; // namespace Graph
// A list of named tensor values, used to specify constant inputs of the graph.
// Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
// The name MUST be unique across both initializer and sparse_initializer,
// but the name MAY also appear in the input list.
repeated TensorProto initializer = 5;
// Initializers (see above) stored in sparse format.
repeated SparseTensorProto sparse_initializer = 15;
// A human-readable documentation for this graph. Markdown is allowed.
string doc_string = 10;
// The inputs and outputs of the graph.
repeated ValueInfoProto input = 11;
repeated ValueInfoProto output = 12;
// Information for the values in the graph. The ValueInfoProto.name's
// must be distinct. It is optional for a value to appear in value_info list.
repeated ValueInfoProto value_info = 13;
// This field carries information to indicate the mapping among a tensor and its
// quantization parameter tensors. For example:
// For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
// which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
repeated TensorAnnotation quantization_annotation = 14;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 16;
reserved 3, 4, 6 to 9;
reserved "ir_version", "producer_version", "producer_tag", "domain";
}
// Tensors
//
// A serialized tensor value.
message TensorProto {
enum DataType {
UNDEFINED = 0;
// Basic types.
FLOAT = 1; // float
UINT8 = 2; // uint8_t
INT8 = 3; // int8_t
UINT16 = 4; // uint16_t
INT16 = 5; // int16_t
INT32 = 6; // int32_t
INT64 = 7; // int64_t
STRING = 8; // string
BOOL = 9; // bool
// IEEE754 half-precision floating-point format (16 bits wide).
// This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
FLOAT16 = 10;
DOUBLE = 11;
UINT32 = 12;
UINT64 = 13;
COMPLEX64 = 14; // complex with float32 real and imaginary components
COMPLEX128 = 15; // complex with float64 real and imaginary components
// Non-IEEE floating-point format based on IEEE754 single-precision
// floating-point number truncated to 16 bits.
// This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
BFLOAT16 = 16;
// Non-IEEE floating-point format based on papers
// FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
// 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
// Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
// The computation usually happens inside a block quantize / dequantize
// fused by the runtime.
FLOAT8E4M3FN = 17; // float 8, mostly used for coefficients, supports nan, not inf
FLOAT8E4M3FNUZ = 18; // float 8, mostly used for coefficients, supports nan, not inf, no negative zero
FLOAT8E5M2 = 19; // follows IEEE 754, supports nan, inf, mostly used for gradients
FLOAT8E5M2FNUZ = 20; // follows IEEE 754, supports nan, not inf, mostly used for gradients, no negative zero
// 4-bit integer data types
UINT4 = 21; // Unsigned integer in range [0, 15]
INT4 = 22; // Signed integer in range [-8, 7], using two's-complement representation
// 4-bit floating point data types
FLOAT4E2M1 = 23;
// Future extensions go here.
}
// The shape of the tensor.
repeated int64 dims = 1;
// The data type of the tensor.
// This field MUST have a valid TensorProto.DataType value
int32 data_type = 2;
// For very large tensors, we may want to store them in chunks, in which
// case the following fields will specify the segment that is stored in
// the current TensorProto.
message Segment {
int64 begin = 1;
int64 end = 2;
}
Segment segment = 3;
// Tensor content must be organized in row-major order.
//
// Depending on the data_type field, exactly one of the fields below with
// name ending in _data is used to store the elements of the tensor.
// For float and complex64 values
// Complex64 tensors are encoded as a single array of floats,
// with the real components appearing in odd numbered positions,
// and the corresponding imaginary component appearing in the
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
repeated float float_data = 4 [packed = true];
// For int32, uint8, int8, uint16, int16, uint4, int4, bool, (b)float16, float8, and float4:
// - (b)float16 and float8 values MUST be converted bit-wise into an unsigned integer
// representation before being written to the buffer.
// - Each pair of uint4, int4, and float4 values MUST be packed as two 4-bit elements into a single byte.
// The first element is stored in the 4 least significant bits (LSB),
// and the second element is stored in the 4 most significant bits (MSB).
//
// Consequently:
// - For data types with a bit-width of 8 or greater, each `int32_data` stores one element.
// - For 4-bit data types, each `int32_data` stores two elements.
//
// When this field is present, the data_type field MUST be
// INT32, INT16, INT8, INT4, UINT16, UINT8, UINT4, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ, FLOAT4E2M1
repeated int32 int32_data = 5 [packed = true];
// For strings.
// Each element of string_data is a UTF-8 encoded Unicode
// string. No trailing null, no leading BOM. The protobuf "string"
// scalar type is not used to match ML community conventions.
// When this field is present, the data_type field MUST be STRING
repeated bytes string_data = 6;
// For int64.
// When this field is present, the data_type field MUST be INT64
repeated int64 int64_data = 7 [packed = true];
// Optionally, a name for the tensor.
string name = 8; // namespace Value
// A human-readable documentation for this tensor. Markdown is allowed.
string doc_string = 12;
// Serializations can either use one of the fields above, or use this
// raw bytes field. The only exception is the string case, where one is
// required to store the content in the repeated bytes string_data field.
//
// When this raw_data field is used to store tensor value, elements MUST
// be stored in as fixed-width, little-endian order.
// Floating-point data types MUST be stored in IEEE 754 format.
// Complex64 elements must be written as two consecutive FLOAT values, real component first.
// Complex128 elements must be written as two consecutive DOUBLE values, real component first.
// Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
// uint4 and int4 values must be packed to 4bitx2, the first element is stored in the 4 LSB and the second element is stored in the 4 MSB.
//
// Note: the advantage of specific field rather than the raw_data field is
// that in some cases (e.g. int data), protobuf does a better packing via
// variable length storage, and may lead to smaller binary footprint.
// When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
bytes raw_data = 9;
// Data can be stored inside the protobuf file using type-specific fields or raw_data.
// Alternatively, raw bytes data can be stored in an external file, using the external_data field.
// external_data stores key-value pairs describing data location. Recognized keys are:
// - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
// protobuf model was stored
// - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
// Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
// - "length" (optional) - number of bytes containing data. Integer stored as string.
// - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
repeated StringStringEntryProto external_data = 13;
// Location of the data for this tensor. MUST be one of:
// - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field.
// - EXTERNAL - data stored in an external location as described by external_data field.
enum DataLocation {
DEFAULT = 0;
EXTERNAL = 1;
}
// If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
DataLocation data_location = 14;
// For double
// Complex128 tensors are encoded as a single array of doubles,
// with the real components appearing in odd numbered positions,
// and the corresponding imaginary component appearing in the
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
// When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
repeated double double_data = 10 [packed = true];
// For uint64 and uint32 values
// When this field is present, the data_type field MUST be
// UINT32 or UINT64
repeated uint64 uint64_data = 11 [packed = true];
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 16;
}
// A serialized sparse-tensor value
message SparseTensorProto {
// The sequence of non-default values are encoded as a tensor of shape [NNZ].
// The default-value is zero for numeric tensors, and empty-string for string tensors.
// values must have a non-empty name present which serves as a name for SparseTensorProto
// when used in sparse_initializer list.
TensorProto values = 1;
// The indices of the non-default values, which may be stored in one of two formats.
// (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
// corresponding to the j-th index of the i-th value (in the values tensor).
// (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
// must be the linearized-index of the i-th value (in the values tensor).
// The linearized-index can be converted into an index tuple (k_1,...,k_rank)
// using the shape provided below.
// The indices must appear in ascending order without duplication.
// In the first format, the ordering is lexicographic-ordering:
// e.g., index-value [1,4] must appear before [2,1]
TensorProto indices = 2;
// The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
repeated int64 dims = 3;
}
// Defines a tensor shape. A dimension can be either an integer value
// or a symbolic variable. A symbolic variable represents an unknown
// dimension.
message TensorShapeProto {
message Dimension {
oneof value {
int64 dim_value = 1;
string dim_param = 2; // namespace Shape
};
// Standard denotation can optionally be used to denote tensor
// dimensions with standard semantic descriptions to ensure
// that operations are applied to the correct axis of a tensor.
// Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
// for pre-defined dimension denotations.
string denotation = 3;
};
repeated Dimension dim = 1;
}
// Types
//
// The standard ONNX data types.
message TypeProto {
message Tensor {
// This field MUST NOT have the value of UNDEFINED
// This field MUST have a valid TensorProto.DataType value
// This field MUST be present for this version of the IR.
int32 elem_type = 1;
TensorShapeProto shape = 2;
}
// repeated T
message Sequence {
// The type and optional shape of each element of the sequence.
// This field MUST be present for this version of the IR.
TypeProto elem_type = 1;
};
// map<K,V>
message Map {
// This field MUST have a valid TensorProto.DataType value
// This field MUST be present for this version of the IR.
// This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
int32 key_type = 1;
// This field MUST be present for this version of the IR.
TypeProto value_type = 2;
};
// wrapper for Tensor, Sequence, or Map
message Optional {
// The type and optional shape of the element wrapped.
// This field MUST be present for this version of the IR.
// Possible values correspond to OptionalProto.DataType enum
TypeProto elem_type = 1;
};
message SparseTensor {
// This field MUST NOT have the value of UNDEFINED
// This field MUST have a valid TensorProto.DataType value
// This field MUST be present for this version of the IR.
int32 elem_type = 1;
TensorShapeProto shape = 2;
}
oneof value {
// The type of a tensor.
Tensor tensor_type = 1;
// NOTE: DNN-only implementations of ONNX MAY elect to not support non-tensor values
// as input and output to graphs and nodes. These types are needed to naturally
// support classical ML operators. DNN operators SHOULD restrict their input
// and output types to tensors.
// The type of a sequence.
Sequence sequence_type = 4;
// The type of a map.
Map map_type = 5;
// The type of an optional.
Optional optional_type = 9;
// Type of the sparse tensor
SparseTensor sparse_tensor_type = 8;
}
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
// for pre-defined type denotations.
string denotation = 6;
}
// Operator Sets
//
// OperatorSets are uniquely identified by a (domain, opset_version) pair.
message OperatorSetIdProto {
// The domain of the operator set being identified.
// The empty string ("") or absence of this field implies the operator
// set that is defined as part of the ONNX specification.
// This field MUST be present in this version of the IR when referring to any other operator set.
string domain = 1;
// The version of the operator set being identified.
// This field MUST be present in this version of the IR.
int64 version = 2;
}
// Operator/function status.
enum OperatorStatus {
EXPERIMENTAL = 0;
STABLE = 1;
}
message FunctionProto {
// The name of the function, similar to op_type in NodeProto.
// This is part of the unique-id (domain, name, overload) of FunctionProtos in a model.
string name = 1;
// Deprecated since IR Version 8
// optional int64 since_version = 2;
reserved 2;
reserved "since_version";
// Deprecated since IR Version 8
// optional OperatorStatus status = 3;
reserved 3;
reserved "status";
// The inputs and outputs of the function.
repeated string input = 4;
repeated string output = 5;
// The attribute parameters of the function.
// It is for function parameters without default values.
repeated string attribute = 6;
// The attribute protos of the function.
// It is for function attributes with default values.
// A function attribute shall be represented either as
// a string attribute or an AttributeProto, not both.
repeated AttributeProto attribute_proto = 11;
// The nodes in the function.
repeated NodeProto node = 7;
// A human-readable documentation for this function. Markdown is allowed.
string doc_string = 8;
// The OperatorSets this function body (graph) relies on.
//
// All nodes in the function body (graph) will bind against the operator
// with the same-domain/same-op_type operator with the HIGHEST version
// in the referenced operator sets. This means at most one version can be relied
// for one domain.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto. Example, if same operator set say 'A' is imported by FunctionProto
// and ModelProto then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same.
repeated OperatorSetIdProto opset_import = 9;
// The domain which this function belongs to.
// This is part of the unique-id (domain, name, overload) of FunctionProtos in a model.
string domain = 10;
// The overload identifier of the function.
// This is part of the unique-id (domain, name, overload) of FunctionProtos in a model.
string overload = 13;
// Information for the values in the function. The ValueInfoProto.name's
// must be distinct and refer to names in the function (including inputs,
// outputs, and intermediate values). It is optional for a value to appear
// in value_info list.
repeated ValueInfoProto value_info = 12;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 14;
}
// For using protobuf-lite
option optimize_for = LITE_RUNTIME;