This repository provides the implemention for the paper Equivariant Score-based Generative Diffusion Framework for 3D Molecules.
Please cite our paper if our datasets or code are helpful to you ~ 😊
- Python 3.7
- pytorch 1.12.0
- rdkit 2022.3.5
- pyparsing 2.4.7
To preprocess the 3D molecular dataset QM9 for training model, run the following command:
python data/preprocess_3d.py
python data/split_generators.py
The configurations are provided on the config/ directory in YAML format.
CUDA_VISIBLE_DEVICES=0 python main.py --type train --config train --seed 42
CUDA_VISIBLE_DEVICES=0 python main.py --type sample --config sample
EMDS builds upon the source code from the projects GDSS, G-SphereNet and EDM.
We thank their contributors and maintainers!
Please cite our paper if our datasets or code are helpful to you.
H. Zhang, Y. Liu, X. Liu, C. Wang, and M. Guo, "Equivariant Score-based Generative Diffusion Framework for 3D Molecules", BMC Bioinformatics 25, 203 (2024), DOI: 10.1186/s12859-024-05810-w