Skip to content

mxu34/prompt-dt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prompting Decisicion Transformer for Few-Shot Policy Generalization

Official code repository for Prompt-DT. [website][paper]

Prompt-DT Architecture:

Teaser

Installation

We tested the code in Ubuntu 20.04.

  • We recommend using Anaconda to create a virtual environment.
conda create --name prompt-dt python=3.8.5
conda activate prompt-dt
  • Our experiments require MuJoCo as well as mujoco-py. Install them by following the instructions in the mujoco-py repo.

  • Install environments and dependencies with the following commands:

# install dependencies
pip install -r requirements.txt

# install environments
./install_envs.sh

Download Datasets

wget -O data.zip 'https://drive.google.com/uc?export=download&id=1rZufm-XRq1Ig-56DejkQUX1si_WzCGBe&confirm=True' 
unzip data.zip
rm data.zip
  • Organize folders as follows.
.
├── config
├── data
│   ├── ant_dir
│   ├── cheetah_dir
│   ├── cheetah_vel
│   └── ML1-pick-place-v2
├── envs
├── prompt_dt
└── ...

Run Experiments

# Prompt-DT
python pdt_main.py --env cheetah_dir # choices:['cheetah_dir', 'cheetah_vel', 'ant_dir', 'ML1-pick-place-v2']

# Prompt-MT-BC
python pdt_main.py --no-rtg --no-r

# MT-ORL
python pdt_main.py --no-prompt

# MT-BC-Finetune
python pdt_main.py --no-prompt --no-rtg --no-r --finetune

Acknowledgements

The code for prompt-dt is based on decision-transformer. We build environments based on repos including macaw, rand_param_envs, and metaworld.

References

If you find our code helpful for your research, please consider citing the paper!

@inproceedings{xu2022prompting,
  title={Prompting Decision Transformer for Few-Shot Policy Generalization},
  author={Xu, Mengdi and Shen, Yikang and Zhang, Shun and Lu, Yuchen and Zhao, Ding and Tenenbaum, Joshua and Gan, Chuang},
  booktitle={International Conference on Machine Learning},
  pages={24631--24645},
  year={2022},
  organization={PMLR}
}

Contributions

Suggestions for enhancing and improving the code are welcome. Please email mengdixu@andrew.cmu.edu with comments and suggestions.

About

Official code repository for Prompt-DT.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published