1. git clone https://github.com/haotian-liu/LLaVA.git
2. Follow the steps in their README to install their dependencies and recover LLaVA weights
3. mv llava ../
4. cd ..
5. rm -rf LLaVA
- Prepare conda environment:
conda env create -f minigpt4_utils/environment.yml
conda activate minigpt4
- Follow instructions here and prepare Vicuna weights. The final weights would be in a single folder in a structure similar to the following:
vicuna_weights
├── config.json
├── generation_config.json
├── pytorch_model.bin.index.json
├── pytorch_model-00001-of-00003.bin
...
Then, set the path to the vicuna weight in the model config file here at Line 16.
- Download the pretrained checkpoints according to the Vicuna model you prepare.
Checkpoint Aligned with Vicuna 13B | Checkpoint Aligned with Vicuna 7B |
---|---|
Downlad | Download |
Then, set the path to the pretrained checkpoint in the evaluation config file here at Line 11.
https://github.com/Vision-CAIR/MiniGPT-4#installation
# Create conda environment
conda create -n mplug_owl python=3.10
conda activate mplug_owl
# Install PyTorch
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
# Install other dependencies
pip install -r mplug_owl_utils/requirements.txt
https://github.com/X-PLUG/mPLUG-Owl#install-requirements
- Prepare conda environment
conda create -n llama_adapter_v2 python=3.8 -y
pip install -r llama_adapter_v2_utils/requirements.txt
- Prepare Llama 7B weights and update this line. Organize the downloaded file in the following structure:
/path/to/llama_model_weights
├── 7B
│ ├── checklist.chk
│ ├── consolidated.00.pth
│ └── params.json
└── tokenizer.model
https://github.com/VegB/LLaMA-Adapter/tree/main/llama_adapter_v2_multimodal#setup
- Prepare the environment according to https://github.com/yxuansu/PandaGPT
- Download Imagebind, Vicuna, PandaGPT Delta checkpoints according to
- Pass
imagebind_ckpt_path
,vicuna_ckpt_path
,delta_ckpt_path
to theVisITPandaGPT
class.
https://github.com/yxuansu/PandaGPT#2-running-pandagpt-demo-back-to-top
- Prepare the environment
# clone the repo
git clone https://github.com/microsoft/TaskMatrix.git
# Go to directory
cd visual-chatgpt
# create a new environment
conda create -n visgpt python=3.8
# activate the new environment
conda activate visgpt
# prepare the basic environments
pip install -r requirements.txt
pip install git+https://github.com/IDEA-Research/GroundingDINO.git
pip install git+https://github.com/facebookresearch/segment-anything.git
# prepare your private OpenAI key (for Linux)
export OPENAI_API_KEY={Your_Private_Openai_Key}
# prepare your private OpenAI key (for Windows)
set OPENAI_API_KEY={Your_Private_Openai_Key}
- (Optional) Set ChatGPT model name in
./visual_chatgpt_utils/visual_chatgpt.py
L. It is recomended to usetext-davinci-003
as by default.
https://github.com/microsoft/TaskMatrix
https://huggingface.co/Salesforce/instructblip-vicuna-13b
https://github.com/salesforce/LAVIS/tree/main/projects/instructblip