Skip to content

Latest commit

 

History

History

baselines

LLaVA Model Evaluation

Setup

1. git clone https://github.com/haotian-liu/LLaVA.git
2. Follow the steps in their README to install their dependencies and recover LLaVA weights
3. mv llava ../
4. cd ..
5. rm -rf LLaVA

MiniGPT-4 Model Evaluation

Setup

  1. Prepare conda environment:
conda env create -f minigpt4_utils/environment.yml
conda activate minigpt4
  1. Follow instructions here and prepare Vicuna weights. The final weights would be in a single folder in a structure similar to the following:
vicuna_weights
├── config.json
├── generation_config.json
├── pytorch_model.bin.index.json
├── pytorch_model-00001-of-00003.bin
...   

Then, set the path to the vicuna weight in the model config file here at Line 16.

  1. Download the pretrained checkpoints according to the Vicuna model you prepare.
Checkpoint Aligned with Vicuna 13B Checkpoint Aligned with Vicuna 7B
Downlad Download

Then, set the path to the pretrained checkpoint in the evaluation config file here at Line 11.

Reference

https://github.com/Vision-CAIR/MiniGPT-4#installation

mPLUG-Owl Model Evaluation

Setup

# Create conda environment
conda create -n mplug_owl python=3.10
conda activate mplug_owl

# Install PyTorch
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

# Install other dependencies
pip install -r mplug_owl_utils/requirements.txt

Reference

https://github.com/X-PLUG/mPLUG-Owl#install-requirements

Llama-Adapter-v2 Model Evaluation

Setup

  1. Prepare conda environment
conda create -n llama_adapter_v2 python=3.8 -y
pip install -r llama_adapter_v2_utils/requirements.txt
  1. Prepare Llama 7B weights and update this line. Organize the downloaded file in the following structure:
/path/to/llama_model_weights
├── 7B
│   ├── checklist.chk
│   ├── consolidated.00.pth
│   └── params.json
└── tokenizer.model

Reference

https://github.com/VegB/LLaMA-Adapter/tree/main/llama_adapter_v2_multimodal#setup

PandaGPT Model Evaluation

Setup

  1. Prepare the environment according to https://github.com/yxuansu/PandaGPT
  2. Download Imagebind, Vicuna, PandaGPT Delta checkpoints according to
  3. Pass imagebind_ckpt_path, vicuna_ckpt_path, delta_ckpt_path to the VisITPandaGPT class.

Reference

https://github.com/yxuansu/PandaGPT#2-running-pandagpt-demo-back-to-top

VisualChatGPT Model Evaluation

  1. Prepare the environment
# clone the repo
git clone https://github.com/microsoft/TaskMatrix.git

# Go to directory
cd visual-chatgpt

# create a new environment
conda create -n visgpt python=3.8

# activate the new environment
conda activate visgpt

#  prepare the basic environments
pip install -r requirements.txt
pip install  git+https://github.com/IDEA-Research/GroundingDINO.git
pip install  git+https://github.com/facebookresearch/segment-anything.git

# prepare your private OpenAI key (for Linux)
export OPENAI_API_KEY={Your_Private_Openai_Key}

# prepare your private OpenAI key (for Windows)
set OPENAI_API_KEY={Your_Private_Openai_Key}
  1. (Optional) Set ChatGPT model name in ./visual_chatgpt_utils/visual_chatgpt.py L. It is recomended to use text-davinci-003 as by default.

Reference

https://github.com/microsoft/TaskMatrix

InstructBLIP2 Model Evaluation

Option 1: use the transformers library (default)

Regerence

https://huggingface.co/Salesforce/instructblip-vicuna-13b

Option 2: use the lavis library

Regerence

https://github.com/salesforce/LAVIS/tree/main/projects/instructblip