-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
advanced_example.py
220 lines (176 loc) · 6.79 KB
/
advanced_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# coding: utf-8
import copy
import json
import pickle
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score
import lightgbm as lgb
print("Loading data...")
# load or create your dataset
binary_example_dir = Path(__file__).absolute().parents[1] / "binary_classification"
df_train = pd.read_csv(str(binary_example_dir / "binary.train"), header=None, sep="\t")
df_test = pd.read_csv(str(binary_example_dir / "binary.test"), header=None, sep="\t")
W_train = pd.read_csv(str(binary_example_dir / "binary.train.weight"), header=None)[0]
W_test = pd.read_csv(str(binary_example_dir / "binary.test.weight"), header=None)[0]
y_train = df_train[0]
y_test = df_test[0]
X_train = df_train.drop(0, axis=1)
X_test = df_test.drop(0, axis=1)
num_train, num_feature = X_train.shape
# generate feature names
feature_name = [f"feature_{col}" for col in range(num_feature)]
# create dataset for lightgbm
# if you want to re-use data, remember to set free_raw_data=False
lgb_train = lgb.Dataset(
X_train, y_train, weight=W_train, feature_name=feature_name, categorical_feature=[21], free_raw_data=False
)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, weight=W_test, free_raw_data=False)
# specify your configurations as a dict
params = {
"boosting_type": "gbdt",
"objective": "binary",
"metric": "binary_logloss",
"num_leaves": 31,
"learning_rate": 0.05,
"feature_fraction": 0.9,
"bagging_fraction": 0.8,
"bagging_freq": 5,
"verbose": 0,
}
print("Starting training...")
# feature_name and categorical_feature
gbm = lgb.train(
params,
lgb_train,
num_boost_round=10,
valid_sets=lgb_train, # eval training data
)
print("Finished first 10 rounds...")
# check feature name
print(f"7th feature name is: {lgb_train.feature_name[6]}")
print("Saving model...")
# save model to file
gbm.save_model("model.txt")
print("Dumping model to JSON...")
# dump model to JSON (and save to file)
model_json = gbm.dump_model()
with open("model.json", "w+") as f:
json.dump(model_json, f, indent=4)
# feature names
print(f"Feature names: {gbm.feature_name()}")
# feature importances
print(f"Feature importances: {list(gbm.feature_importance())}")
print("Loading model to predict...")
# load model to predict
bst = lgb.Booster(model_file="model.txt")
# can only predict with the best iteration (or the saving iteration)
y_pred = bst.predict(X_test)
# eval with loaded model
auc_loaded_model = roc_auc_score(y_test, y_pred)
print(f"The ROC AUC of loaded model's prediction is: {auc_loaded_model}")
print("Dumping and loading model with pickle...")
# dump model with pickle
with open("model.pkl", "wb") as fout:
pickle.dump(gbm, fout)
# load model with pickle to predict
with open("model.pkl", "rb") as fin:
pkl_bst = pickle.load(fin)
# can predict with any iteration when loaded in pickle way
y_pred = pkl_bst.predict(X_test, num_iteration=7)
# eval with loaded model
auc_pickled_model = roc_auc_score(y_test, y_pred)
print(f"The ROC AUC of pickled model's prediction is: {auc_pickled_model}")
# continue training
# init_model accepts:
# 1. model file name
# 2. Booster()
gbm = lgb.train(params, lgb_train, num_boost_round=10, init_model="model.txt", valid_sets=lgb_eval)
print("Finished 10 - 20 rounds with model file...")
# decay learning rates
# reset_parameter callback accepts:
# 1. list with length = num_boost_round
# 2. function(curr_iter)
gbm = lgb.train(
params,
lgb_train,
num_boost_round=10,
init_model=gbm,
valid_sets=lgb_eval,
callbacks=[lgb.reset_parameter(learning_rate=lambda iter: 0.05 * (0.99**iter))],
)
print("Finished 20 - 30 rounds with decay learning rates...")
# change other parameters during training
gbm = lgb.train(
params,
lgb_train,
num_boost_round=10,
init_model=gbm,
valid_sets=lgb_eval,
callbacks=[lgb.reset_parameter(bagging_fraction=[0.7] * 5 + [0.6] * 5)],
)
print("Finished 30 - 40 rounds with changing bagging_fraction...")
# self-defined objective function
# f(preds: array, train_data: Dataset) -> grad: array, hess: array
# log likelihood loss
def loglikelihood(preds, train_data):
labels = train_data.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
grad = preds - labels
hess = preds * (1.0 - preds)
return grad, hess
# self-defined eval metric
# f(preds: array, train_data: Dataset) -> name: str, eval_result: float, is_higher_better: bool
# binary error
# NOTE: when you do customized loss function, the default prediction value is margin
# This may make built-in evaluation metric calculate wrong results
# For example, we are doing log likelihood loss, the prediction is score before logistic transformation
# Keep this in mind when you use the customization
def binary_error(preds, train_data):
labels = train_data.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
return "error", np.mean(labels != (preds > 0.5)), False
# Pass custom objective function through params
params_custom_obj = copy.deepcopy(params)
params_custom_obj["objective"] = loglikelihood
gbm = lgb.train(
params_custom_obj, lgb_train, num_boost_round=10, init_model=gbm, feval=binary_error, valid_sets=lgb_eval
)
print("Finished 40 - 50 rounds with self-defined objective function and eval metric...")
# another self-defined eval metric
# f(preds: array, train_data: Dataset) -> name: str, eval_result: float, is_higher_better: bool
# accuracy
# NOTE: when you do customized loss function, the default prediction value is margin
# This may make built-in evaluation metric calculate wrong results
# For example, we are doing log likelihood loss, the prediction is score before logistic transformation
# Keep this in mind when you use the customization
def accuracy(preds, train_data):
labels = train_data.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
return "accuracy", np.mean(labels == (preds > 0.5)), True
# Pass custom objective function through params
params_custom_obj = copy.deepcopy(params)
params_custom_obj["objective"] = loglikelihood
gbm = lgb.train(
params_custom_obj,
lgb_train,
num_boost_round=10,
init_model=gbm,
feval=[binary_error, accuracy],
valid_sets=lgb_eval,
)
print("Finished 50 - 60 rounds with self-defined objective function and multiple self-defined eval metrics...")
print("Starting a new training job...")
# callback
def reset_metrics():
def callback(env):
lgb_eval_new = lgb.Dataset(X_test, y_test, reference=lgb_train)
if env.iteration - env.begin_iteration == 5:
print("Add a new valid dataset at iteration 5...")
env.model.add_valid(lgb_eval_new, "new_valid")
callback.before_iteration = True
callback.order = 0
return callback
gbm = lgb.train(params, lgb_train, num_boost_round=10, valid_sets=lgb_train, callbacks=[reset_metrics()])
print("Finished first 10 rounds with callback function...")