Skip to content
/ BiDR Public

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

License

Notifications You must be signed in to change notification settings

microsoft/BiDR

Repository files navigation

BiDR

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval.

Requirements

torch==1.7
transformers==4.6
faiss-gpu==1.6.4.post2

Data Download and Preprocess

bash download_data.sh
python preprocess.py

These commands will download and preprocess the MSMARCO Passage and Doc dataset, then the resutls will be saved to ./data.
We take the Passage dataset as the example to show the running workflow.

Conventional Workflow

Representation Learning

Train the encoder with random negative (or set --hardneg_json to provied bm25/hard negatives) :

mkdir log
dataset=passage
savename=dense_global_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
|tee ./log/${savename}.log

Unsupervised Quantization

Generate dense embeddings of queries and docs:

data_type=passage
savename=dense_global_model
epoch=20
python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

Product Quantization based on Faiss and recall performance:

data_type=passage
savename=dense_global_model
epoch=20
python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--ckpt_path /model/${savename}/${epoch}/ \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Progressively Optimized Bi-Granular Document Representation

Sparse Representation Learning

Instead of running unsupervised quantization for the well-learned dense embeddings, the sparse embeddings are generated from contrastive learning, which optimizes the global discrimination and helps to enable high-quality answers to be covered in candidate search.

Train

We find that using Faiss OPQ to initialize the PQ module has a significant gain for MSMARCO dataset. But for the largest dataset: Ads dataset, initialization with Faiss OPQ is redundant and has no promotion.

dataset=passage
savename=sparse_global_model
python train.py --model_name_or_path ./model/dense_global_model/20 \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq True \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--partition 96 --centroids 256 --quantloss_weight 0.0 \
|tee ./log/${savename}.log

where the ./model/dense_global_model/20 and ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index is generated by conventional workflow.

Test

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index

Dense Representation Learning

The dense embeddings are optimized based on the candidate distribution generated by sparse embeddings. We propose a novel sampling strategy called locality-centric sampling to enhance local discrimination: construct a bipartite proximity graph and conduct random walk or snow sample on it.

Train

Encode the quries in train set and generate the candidates for all train queries:

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} \
--mode train

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--mode train \
--save_hardneg_to_json

This command will save the train_hardneg.json to output_dir. Then train the dense embeddings to distinguish the ground truth from the negative in candidate:

dataset=passage
savename=dense_local_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method {random_walk or snow_sample} \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
--hardneg_json ./data/${data_type}/evaluate/sparse_global_model_20/train_hardneg.json \
--mink 0  --maxk 200 \
|tee ./log/${savename}.log

Test

data_type=passage
savename=dense_local_model
epoch=10

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--ckpt_path ./model/${savename}/${epoch}/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/post_verification.py \
--data_type ${data_type} \
--output_dir  evaluate/${savename}_${epoch} \
--candidate_from_ann ./data/${data_type}/evaluate/sparse_global_model_20/dev.rank_1000_score_faiss_opq.tsv \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

About

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published