Skip to content

lwwu2/fipt

Repository files navigation

FIPT: Factorized Inverse Path Tracing

This repo contains the demo code for FIPT. Full release is pending (see #TODO).

Setup

Set up the environment via:

conda create --name fipt python=3.8 pip
conda activate fipt
# firstly, install torch==1.31.1 according to your platform; check: https://pytorch.org/get-started/previous-versions/
pip install -r requirements.txt
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch # tested with tinycudann-1.7

Also, install torch_scatter. See the #FAQ for detailed instructions.

Data

For the current release, we provide demo of one synthetic scene and one real world scene. They may not exactly match the results reported in the paper.

You can download the processed data from here (download zip or folders). Or you can check rui-indoorinv-data (branch: fipt) for generating data (synthetic/real) from scratch (i.e. synthetic scenes from Mitsuba XML files by Benedikt Bitterli, or real world data from RAW HDR captures.).

Organize the data as:

.
├── data/
│   ├── indoor_synthetic/
│   │   └── kitchen/
│   │       ├── scene.obj               # scene geometry
│   │       └── train | val
│   │           ├── transforms.json     # camera parameters
│   │           ├── Image/ID_0001.exr   # HDR image
│   │           └── segmentation/ID.exr # semantic segmentation
│   └── real/
│       └── ClassRoom/
│           ├── scene.obj           # scene geometry
│           ├── cam.txt             # each row of each camera is: origin, lookat location, and up; OpenCV convention (right-down-forward)
│           ├── K_list.txt          # camera instrinsics list
│           ├── Image/ID_0001.exr   # HDR image
│           └── segmentation/ID.exr # semantic segmentation
└── pretrained/
    ├── kitchen/
    │   ├── last.ckpt # weights of BRDF and emission mask networks
    │   ├── emitter.pth # emitter parameters
    │   └── vslf.npz # volumetric surface light field (radiance cache)
    └── ClassRoom/
        └── ...

Train the model

Edit configs/config.py to configure hyper parameters.

Edit train.sh to specify dataset folder.

Run:

sh train.sh

The script contains 4 subroutines:

  1. Initialize shadings:

    python bake_shading.py --scene SCENE_PATH --output OUTPUT_PATH \
                           --dataset DATASET_TYPE
    
  2. Optimize BRDF and emission mask:

    python train.py --experiment_name EXPERIMENT_NAME --device DEVICE_ID \
                    --max_epochs MAX_EPOCHS
    
  3. Extract emitters:

    python extract_emitter.py --scene SCENE_PATH --output OUTPUT_PATH\
                              --ckpt NETWORK_CHECKPOINT --dataset DATASET_TYPE
    
  4. Shading refinement:

    python refine_shading.py --scene SCENE_PATH --output OUTPUT_PATH\
                             --ckpt NETWORK_CHECKPOINT --dataset DATASET_TYPE\
                             --ft REFINEMENT_STAGE
    

Notebook demo

By default, the notebooks load pretrained model. To use your trained models, change all occurances of pretrained/ to outputs/.

Make sure you select the right kernel which uses the correct Python environment as configured above. See #FAQ

  • demo/brdf-emission.ipynb : visualize BRDF, emission, and rendering for selected views.
  • demo/relighting.ipynb: customizable relighting and object insertion. The scene are written in mitsuba3.

Citation

If you find our work is useful, please consider cite:

@misc{fipt2023,
      title={Factorized Inverse Path Tracing for Efficient and Accurate Material-Lighting Estimation}, 
      author={Liwen Wu and Rui Zhu and Mustafa B. Yaldiz and Yinhao Zhu and Hong Cai and Janarbek Matai and Fatih Porikli and Tzu-Mao Li and Manmohan Chandraker and Ravi Ramamoorthi},
      year={2023},
      eprint={2304.05669},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

TODO

  • Full release of all scenes, and all benchmarks
    • Including relighting
  • Implementation of adapted baseline methods & evaluation
    • Li'22
    • FVP

FAQ

Install torch_scatter

To install torch_scatter, nagivate to your environment configuration, you will see something like:

pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-1.13.0+cu117.html

You can fist try to install it directly:

pip install torch_scatter -f https://data.pyg.org/whl/torch-1.13.0+cu117.html

Try this and hopefully no error occurs:

python -c "import torch_scatter"

If not, go to the link by the end of the first code block (e.g. https://data.pyg.org/whl/torch-1.13.0+cu117.html), find the torch_scatter wheel which matches your Python (cp**), torch (pt***) and cuda version (cu***). Get the link to the wheel, and run something like:

pip install torch_scatter -f https://data.pyg.org/whl/torch-1.12.0%2Bcu113/torch_scatter-2.1.0%2Bpt112cu113-cp38-cp38-linux_x86_64.whl

Install conda env fipt to Jupyter

conda activate fipt
python -m ipykernel install --user --name=fipt
# then launch Jupyter Notebook: (fipt) ~/Documents/Projects/fipt$ jupyter notebook
# select Kernel -> Change kernel -> fipt

Reference training log

Training log on a 3090 GPU for the kitchen scene: see train.log (look for ...time (s): ...).

About

FIPT: Factorized Inverse Path Tracing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published