-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathexample_feat_extract.py
64 lines (54 loc) · 1.89 KB
/
example_feat_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import time
import numpy as np
from keras import backend as K
from music_tagger_cnn import MusicTaggerCNN
from music_tagger_crnn import MusicTaggerCRNN
import audio_processor as ap
import pdb
def librosa_exists():
try:
__import__('librosa')
except ImportError:
return False
else:
return True
def main(net):
''' *WARNIING*
This model use Batch Normalization, so the prediction
is affected by batch. Use multiple, different data
samples together (at least 4) for reliable prediction.'''
print('Running main() with network: %s and backend: %s' % (net, K._BACKEND))
# setting
audio_paths = ['data/bensound-cute.mp3',
'data/bensound-actionable.mp3',
'data/bensound-dubstep.mp3',
'data/bensound-thejazzpiano.mp3']
melgram_paths = ['data/bensound-cute.npy',
'data/bensound-actionable.npy',
'data/bensound-dubstep.npy',
'data/bensound-thejazzpiano.npy']
# prepare data like this
melgrams = np.zeros((0, 1, 96, 1366))
if librosa_exists:
for audio_path in audio_paths:
melgram = ap.compute_melgram(audio_path)
melgrams = np.concatenate((melgrams, melgram), axis=0)
else:
for melgram_path in melgram_paths:
melgram = np.load(melgram_path)
melgrams = np.concatenate((melgrams, melgram), axis=0)
# load model like this
if net == 'cnn':
model = MusicTaggerCNN(weights='msd', include_top=False)
elif net == 'crnn':
model = MusicTaggerCRNN(weights='msd', include_top=False)
# predict the tags like this
print('Predicting features...')
start = time.time()
features = model.predict(melgrams)
print features[:, :10]
return
if __name__ == '__main__':
networks = ['cnn', 'crnn']
for net in networks:
main(net)