import re import os import json import argparse from string import punctuation import torch import yaml import numpy as np from torch.utils.data import DataLoader from g2p_en import G2p # from pypinyin import pinyin, Style from utils.model import get_model, get_vocoder from utils.tools import get_configs_of, to_device, synth_samples, word_level_subdivision from dataset import TextDataset from text import text_to_sequence def read_lexicon(lex_path): lexicon = {} with open(lex_path) as f: for line in f: temp = re.split(r"\s+", line.strip("\n")) word = temp[0] phones = temp[1:] if word.lower() not in lexicon: lexicon[word.lower()] = phones return lexicon def preprocess_english(text, preprocess_config): text = text.rstrip(punctuation) lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"]) g2p = G2p() phones = [] word_boundaries = [] words = re.split(r"([,;.\-\?\!\s+])", text) for w in words: if w.lower() in lexicon: phone_list = lexicon[w.lower()] else: phone_list = list(filter(lambda p: p != " ", g2p(w))) if phone_list: phones += phone_list word_boundaries.append(len(phone_list)) phones = "{" + "}{".join(phones) + "}" phones = re.sub(r"\{[^\w\s]?\}", "{sp}", phones) phones = phones.replace("}{", " ") if preprocess_config["preprocessing"]["text"]["sub_divide_word"]: word_boundaries = word_level_subdivision( word_boundaries, preprocess_config["preprocessing"]["text"]["max_phoneme_num"]) print("Raw Text Sequence: {}".format(text)) print("Phoneme Sequence: {}".format(phones)) sequence = np.array(text_to_sequence( phones, preprocess_config["preprocessing"]["text"]["text_cleaners"] )) return np.array(sequence), np.array(word_boundaries) def synthesize(device, model, args, configs, vocoder, batchs, duration_control): preprocess_config, model_config, train_config = configs for batch in batchs: batch = to_device(batch, device) with torch.no_grad(): # Forward output = model( *batch[2:], d_control=duration_control, ) synth_samples( batch, output, vocoder, model_config, preprocess_config, train_config["path"]["result_path"], args, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, required=True) parser.add_argument( "--mode", type=str, choices=["batch", "single"], required=True, help="Synthesize a whole dataset or a single sentence", ) parser.add_argument( "--source", type=str, default=None, help="path to a source file with format like train.txt and val.txt, for batch mode only", ) parser.add_argument( "--text", type=str, default=None, help="raw text to synthesize, for single-sentence mode only", ) parser.add_argument( "--speaker_id", type=str, default="p225", help="speaker ID for multi-speaker synthesis, for single-sentence mode only", ) parser.add_argument( "--dataset", type=str, required=True, help="name of dataset", ) parser.add_argument( "--duration_control", type=float, default=1.0, help="control the speed of the whole utterance, larger value for slower speaking rate", ) args = parser.parse_args() # Check source texts if args.mode == "batch": assert args.source is not None and args.text is None if args.mode == "single": assert args.source is None and args.text is not None # Read Config preprocess_config, model_config, train_config = get_configs_of( args.dataset) configs = (preprocess_config, model_config, train_config) os.makedirs( os.path.join(train_config["path"]["result_path"], str(args.restore_step)), exist_ok=True) # Set Device torch.manual_seed(train_config["seed"]) if torch.cuda.is_available(): torch.cuda.manual_seed(train_config["seed"]) device = torch.device('cuda') else: device = torch.device('cpu') print("Device of PortaSpeech:", device) # Get model model = get_model(args, configs, device, train=False) # Load vocoder vocoder = get_vocoder(model_config, device) # Preprocess texts if args.mode == "batch": # Get dataset dataset = TextDataset(args.source, preprocess_config, model_config) batchs = DataLoader( dataset, batch_size=8, collate_fn=dataset.collate_fn, ) if args.mode == "single": ids = raw_texts = [args.text[:100]] # Speaker Info load_spker_embed = model_config["multi_speaker"] \ and preprocess_config["preprocessing"]["speaker_embedder"] != 'none' with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "speakers.json")) as f: speaker_map = json.load(f) speakers = np.array([speaker_map[args.speaker_id]]) if model_config["multi_speaker"] else np.array( [0]) # single speaker is allocated 0 spker_embed = np.load(os.path.join( preprocess_config["path"]["preprocessed_path"], "spker_embed", "{}-spker_embed.npy".format(args.speaker_id), )) if load_spker_embed else None if preprocess_config["preprocessing"]["text"]["language"] == "en": texts, word_boundaries = preprocess_english( args.text, preprocess_config) texts, word_boundaries = np.array( [texts]), np.array([word_boundaries]) else: raise NotImplementedError text_lens = np.array([len(texts[0])]) text_w_lens = np.array([len(word_boundaries[0])]) batchs = [(ids, raw_texts, speakers, texts, text_lens, max(text_lens), word_boundaries, text_w_lens, max(text_w_lens), spker_embed)] synthesize(device, model, args, configs, vocoder, batchs, args.duration_control)