import argparse import os import torch import yaml import torch.nn as nn from torch.utils.data import DataLoader from utils.model import get_model, get_vocoder from utils.tools import to_device, log, synth_one_sample from model import PortaSpeechLoss from dataset import Dataset def evaluate(device, model, step, configs, logger=None, vocoder=None, len_losses=6, num_gpus=1): preprocess_config, model_config, train_config = configs # Get dataset dataset = Dataset( "val.txt", preprocess_config, model_config, train_config, sort=False, drop_last=False ) batch_size = train_config["optimizer"]["batch_size"] loader = DataLoader( dataset, batch_size=batch_size, shuffle=False, collate_fn=dataset.collate_fn, ) # Get loss function Loss = PortaSpeechLoss( preprocess_config, model_config, train_config).to(device) # Evaluation loss_sums = [0 for _ in range(len_losses)] for batchs in loader: for batch in batchs: batch = to_device(batch, device) with torch.no_grad(): # Forward output = model(*(batch[2:])) # Cal Loss losses = Loss(batch, output, step) for i in range(len(losses)): loss_sums[i] += losses[i].item() * len(batch[0]) loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums] message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, KL Loss: {:.4f}, PN Loss: {:.4f}, Duration Loss: {:.4f}, Helper Loss: {:.4f}".format( *([step] + [l for l in loss_means]) ) if logger is not None: fig, attn_fig, wav_reconstruction, wav_prediction, tag = synth_one_sample( model, batch, output, vocoder, model_config, preprocess_config, num_gpus, ) log(logger, step, losses=loss_means) log( logger, fig=fig, tag="Validation/step_{}_{}".format(step, tag), ) log( logger, fig=attn_fig, tag="Validation_attn/step_{}_{}".format(step, tag), ) sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"] log( logger, audio=wav_reconstruction, sampling_rate=sampling_rate, tag="Validation/step_{}_{}_reconstructed".format(step, tag), ) log( logger, audio=wav_prediction, sampling_rate=sampling_rate, tag="Validation/step_{}_{}_synthesized".format(step, tag), ) return message